Diagram 4.4-E. Constant pool relations
New items abbreviated Anchor, Linkage are fully spelled
CONSTANT SpecializationAnchor, CONSTANT SpecializationLinkage

: Anchor*,
L1nkagetmew D"
: parameter ~—1InvokeDynamic
reference S
" bootstrap|method
Loadable
Rl MethodHandle

existing
concept

. String
- (see Diagram 4.4-F) ".
: ’ string
v
Fieldref,
XMethodref MethodType
descriptor
name and type
Module,
*new concept Package
NameAndType

name .
degcriptor

Class
utf8

Diagram 4.4-F(a). API Point relations
Note: A Linkage constant is usable anywhere its
reference item may be used.

invokeX
getX, putX,
withfield

ldc, new
defaultvalue
Xnewarray
instanceof
checkcast
operand
(class or
ipnterface)

ClassFile
structure

< operand
super_class (field or
interfaces pethod)

MethodHandle

refekence

Linkage*
*new

“API Point
Name”*

*new concept

e |
reference

parameter

Fieldref, :
XMethodref Class “l oadable
T Constant”
class

(recursive)

“API Poin
Reference”

(recursive, to
class only)

(see Diagram 4.4-G)

plain class

Class

plain member

Fieldref,
XMethodref

class

Class

Diagram 4.4-F(b). “API Point References”, all configurations
(These are also “API Point Names”, except Linkage constants.)

specialized
method
(in species)

Linkage*

refefence

XMethodref

class

A4

Linkage*

species
Linkage*
reference specialized
method
Clase (in class)
Linkage*
|
reference
species member
Fieldref,
o mnader XMethodref
cléss |
V class
Linkage*
refe}ence
Class Class

T
reference

Class

Diagram 4.4-G. “Loadable Constant” relations

ldc EEEE—
Parametric

operand attribute*

*new
.-

Anchor*,
Dynamic,
InvokeDynamic

Type
Restriction
attributex*

*nel

bootstrap

riction

Linkage*
*new

“l oadable
Constant”

existing
concept

String,

Integer, Dynamic,
Long, Class, Linkage*
Float, MethodType, (recursive)
Double MethodHandle

Note: A Linkage constant is only loadable if its
reference is loadable, i.e., a Class. Other Linkage
constants (e.g., of a Fieldref) are not loadable.

Diagram 4.4-H(a). Example constant pool:

non-parametric client of List<Point>
(resolution states are at right; all are invariant)

IMethodref
L[P].get(int)

-

operand

NameAndType
get(int)O0bj

]

(CP entries)

invoke-
interface

Linkage
List[Point]

Class
List

utf8
j/u/List

LT 178

Class
Point

utfs8
pkg/Point

ETh

)
Method ptr,
Anchor, TR

YT ETT
(

corresponding
CP entry

states)

Anchor,
Species

List.class
—<

—<
—<
—<
Point.class

—

—

Diagram 4.4-H(b).

Linkage
List[R.T]

Example parametric interface
public interface List<T> { ..get.. }

Class
List

<
«
<
. B

rClassFile

utf8
j/u/List

t

ConDy
R.T

3/

this = j/u/List
interface = Collection[R.T]
Parametric = Anchor R

g g

Anchor R
BSM=...

A

AALJA&

A

[,

| (self species reference, if any))

N\

method info

name = sublist

type = (int,int)List
TypeRestriction = {List[R.T]}
Parametric = Anchor R

\Code = none (ACC_ABSTRACT)

I\

method info

name = get

type = (int)Object
TypeRestriction = {R.T}
Parametric = Anchor R

\Code = none (ACC_ABSTRACT)

Diagram 4.4-H(c).

Example parametric implementation
class ArrayList<T> implements List<T> { ..get.. }

y

| Linkage [<*
A.yList[R.T] p §
Class g / ClassFile .
ArraylList [= > 'FhlS =]/u/At.‘rayL}st
:l £ interface = j/u/List[R.T]
utfs Parametric = Anchor R
j/u/ArraylList
—f\—\(self species reference, if any)|
X _ method_info
SLIEEE < name = sublList
List[R.T] :l type = (int,int)List
Class TypeRestriction = {List[R.T]}
List Parametric = Anchor R
Utfs :l >Code = stuff using elements/A)
j/u/List method info
name = get
type = (int)Object
— 11— TypeRestriction = {R.T}
Y Parametric = Anchor R
\Code = stuff using elements/A)
ConDy ‘ — - N
R.T < field info
name = elements
Anchor R type = Object[]
BSM=.. TypeRestriction = {R.T[]}
ConDy P I—f\— Parametric = Anchor R
R.T[] h L),

Diagram 4.4-H(d).

Example parametric subclass
class MyVector<T> extends ju.Vector<T> { ..get.. }

V[T].el-Data

NameAndType

possible type restrictionwT[]

iloadilléaload I: -)

class Vector<T> { .. protected T[] elementData; .. }
| Linkage [<%
MyVector[T] ::]
Class € Ek?iSFik§Vector
MyVector |— =
v | ? super = j/u/Vector[R.T]
utfs Parametric = Anchor R
MyVector
\(self species reference, if any)
| Linkage <
Vector[R.T] ii]
Class rmethod_info)
Vector : name = get
Utfs type = (int)Object
j/u/Vector N TypeRestriction = {R.T}
—| Parametric = Anchor R
Code = (invariants, parametrics)
(bytecodes...)
B ConDy A (_)
R.T ::] getfield
= elementData
Anchor R N name eLe
BSM= < R—— | ||type = Object[]
= class = Vector[R.T]
Fieldref — l

elmData:0bj[]

J/

Diagram 4.7-D(a). Parametric attribute relations

ClassFile field info
method info

Parametric

Parametric*
*new attribute

anchor

Anchor*

Diagram 4.7-D(b). TypeRestriction attribute

field info
method info

TypeRestriction

Type
Restriction
*new attribute

restrigtion(s)

Loadable
Constant

(recursive)

(see Diagram 4.4-G)

relations

Diagram 4.4-H(d).

Example parametric subclass
class MyVector<T> extends ju.Vector<T> { ..get.. }

V[T].el-Data

NameAndType

possible type restrictionwT[]

iloadilléaload I: -)

class Vector<T> { .. protected T[] elementData; .. }
| Linkage [<%
MyVector[T] ::]
Class € Ek?iSFik§Vector
MyVector |— =
v | ? super = j/u/Vector[R.T]
utfs Parametric = Anchor R
MyVector
\(self species reference, if any)
| Linkage <
Vector[R.T] ii]
Class rmethod_info)
Vector : name = get
Utfs type = (int)Object
j/u/Vector N TypeRestriction = {R.T}
—| Parametric = Anchor R
Code = (invariants, parametrics)
(bytecodes...)
B ConDy A (_)
R.T ::] getfield
= elementData
Anchor R N name eLe
BSM= < R—— | ||type = Object[]
= class = Vector[R.T]
Fieldref — l

elmData:0bj[]

J/

Graph of existing and proposed relations among constant pool structures,
to support the “Parametric VM”.
Legend:

A rectangular box shows one or more constant types. For example,
a box labeled class represents a CONSTANT Class_info structure.
An arrow shows how one entity depends directly on another. For
example, string depends directly on the ut£s which specifies its
characters.

Arrows from boxes are labeled to show which item in a given
constant pool structure provides the index for the relation indicated
by the arrow.

A circle shows, not a single constant type, but a conceptual group
of types, which are (for some uses) interchangeable. The
conceptual groups are Loadable Constant, API Point Reference,
and API Point Name.

Box-headed arrows into a group circle show users of all the types
in the group, while arrows out of the circle indicate the group’s
types. Small dotted arrows show some routes through a group.

A starred footnote of new indicates a proposed new constant type
or conceptual group of types. The new types are
SpecializationAnchor and SpecializationLinkage, O Anchor and
Linkage for short. The new conceptual groups are API Point
Reference and (a subset) API Point Name.

An arrow with a blank head redirects to a different diagram.
Recursion points are white, and stand in place of the corresponding
colored concept or constant type.

A lozenge shaped box shows one or more instruction types.

A box with rounded corners shows some other structure, such as
the new parametric and TypeRestriction attributes.

	jvms-4.4-E
	jvms-4.4-F(a)
	jvms-4.4-F(b)
	jvms-4.4-G
	jvms-4.4-H(a)
	jvms-4.4-H(b)
	jvms-4.4-H(c)
	jvms-4.4-H(d)
	jvms-4.7-D(a)
	jvms-4.7-D(b)
	static call
	Legend

