
Diagram 4.4-E. Constant pool relations
New items abbreviated Anchor, Linkage are fully spelled
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Diagram 4.4-F(a). API Point relations
Note: A Linkage constant is usable anywhere its 
reference item may be used.
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Diagram 4.4-F(b). “API Point References”, all configurations
(These are also “API Point Names”, except Linkage constants.)
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Dynamic,
Linkage*
(recursive)

Diagram 4.4-G. “Loadable Constant” relations
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Diagram 4.4-H(a). Example constant pool:
non-parametric client of List<Point>

(resolution states are at right; all are invariant)
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Diagram 4.4-H(b). Example parametric interface
public interface List<T> { …get… }
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Diagram 4.4-H(c). Example parametric implementation
class ArrayList<T> implements List<T> { …get… }
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Diagram 4.4-H(d). Example parametric subclass
  class MyVector<T> extends ju.Vector<T> { …get… }
  class Vector<T> { … protected T[] elementData; … }
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Diagram 4.7-D(a). Parametric attribute relations
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Diagram 4.7-D(b). TypeRestriction attribute relations
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Diagram 4.4-H(d). Example parametric subclass
  class MyVector<T> extends ju.Vector<T> { …get… }
  class Vector<T> { … protected T[] elementData; … }
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Graph of existing and proposed relations among constant pool structures, 
to support the “Parametric VM”.
Legend:

• A rectangular box shows one or more constant types. For example, 
a box labeled Class represents a CONSTANT_Class_info structure.

• An arrow shows how one entity depends directly on another. For 
example, String depends directly on the Utf8 which specifies its 
characters.

• Arrows from boxes are labeled to show which item in a given 
constant pool structure provides the index for the relation indicated 
by the arrow.

• A circle shows, not a single constant type, but a conceptual group 
of types, which are (for some uses) interchangeable. The 
conceptual groups are Loadable Constant, API Point Reference, 
and API Point Name.

• Box-headed arrows into a group circle show users of all the types 
in the group, while arrows out of the circle indicate the group’s 
types.   Small dotted arrows show some routes through a group.

• A starred footnote of new indicates a proposed new constant type 
or conceptual group of types. The new types are 
SpecializationAnchor and SpecializationLinkage, or Anchor and 
Linkage for short. The new conceptual groups are API Point 
Reference and (a subset) API Point Name.

• An arrow with a blank head redirects to a different diagram.
• Recursion points are white, and stand in place of the corresponding 

colored concept or constant type.
• A lozenge shaped box shows one or more instruction types.
• A box with rounded corners shows some other structure, such as 

the new Parametric and TypeRestriction attributes.
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