Diagram 4.4-E. Constant pool relations
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Diagram 4.4-F(a). API Point relations
Note: A Linkage constant is usable anywhere its
reference item may be used.
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Diagram 4.4-F(b). “API Point References”, all configurations
(These are also “API Point Names”, except Linkage constants.)
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Diagram 4.4-G. “Loadable Constant” relations
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Note: A Linkage constant is only loadable if its
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Diagram 4.4-H(a). Example constant pool:

non-parametric client of List<Point>
(resolution states are at right; all are invariant)
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Diagram 4.4-H(b).
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Diagram 4.4-H(c).

Example parametric implementation
class ArrayList<T> implements List<T> { ..get.. }
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Diagram 4.4-H(d).

Example parametric subclass
class MyVector<T> extends ju.Vector<T> { ..get.. }

V[T].el-Data

NameAndType

possible type restrictionwT[]

iloadilléaload I: - )

class Vector<T> { .. protected T[] elementData; .. }
| Linkage [<%
MyVector[T] ::]
Class € Ek?iSFik§Vector
MyVector |— =
v | ? super = j/u/Vector[R.T]
utfs Parametric = Anchor R
MyVector
\(self species reference, if any)
| Linkage <
Vector[R.T] ii]
Class rmethod_info )
Vector : name = get
Utfs type = (int)Object
j/u/Vector N TypeRestriction = {R.T}
—| Parametric = Anchor R
Code = (invariants, parametrics)
(bytecodes...)
B ConDy A ( _ )
R.T ::] getfield
= elementData
Anchor R N name eLe
BSM= < R—— | ||type = Object[]
= class = Vector[R.T]
Fieldref — l

elmData:0bj[]

J/




Diagram 4.7-D(a). Parametric attribute relations
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Diagram 4.7-D(b). TypeRestriction attribute
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Diagram 4.4-H(d).

Example parametric subclass
class MyVector<T> extends ju.Vector<T> { ..get.. }
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Graph of existing and proposed relations among constant pool structures,
to support the “Parametric VM”.
Legend:

A rectangular box shows one or more constant types. For example,
a box labeled class represents a CONSTANT Class_info structure.
An arrow shows how one entity depends directly on another. For
example, string depends directly on the ut£s which specifies its
characters.

Arrows from boxes are labeled to show which item in a given
constant pool structure provides the index for the relation indicated
by the arrow.

A circle shows, not a single constant type, but a conceptual group
of types, which are (for some uses) interchangeable. The
conceptual groups are Loadable Constant, API Point Reference,
and API Point Name.

Box-headed arrows into a group circle show users of all the types
in the group, while arrows out of the circle indicate the group’s
types. Small dotted arrows show some routes through a group.

A starred footnote of new indicates a proposed new constant type
or conceptual group of types. The new types are
SpecializationAnchor and SpecializationLinkage, O Anchor and
Linkage for short. The new conceptual groups are API Point
Reference and (a subset) API Point Name.

An arrow with a blank head redirects to a different diagram.
Recursion points are white, and stand in place of the corresponding
colored concept or constant type.

A lozenge shaped box shows one or more instruction types.

A box with rounded corners shows some other structure, such as
the new parametric and TypeRestriction attributes.
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