
Diagram 4.4-E. Constant pool relations
New items abbreviated Anchor, Linkage are fully spelled
CONSTANT_SpecializationAnchor, CONSTANT_SpecializationLinkage

String

Module,
Package

Anchor*,
Dynamic,

InvokeDynamic

MethodTypeFieldref,
XMethodref

NameAndType

MethodHandle

(see Diagram 4.4-G)

string

bootstrap_method

name

descriptor

name_and_type

descriptor
name

Utf8

Linkage*
*new

reference

“API Point
Reference”*

*new concept

(see Diagram 4.4-F)

parameter

reference
class

Classname

“API Point
Name”*

*new concept

“Loadable
Constant”

existing
concept

bootstrap_arguments

Diagram 4.4-F(a). API Point relations
Note: A Linkage constant is usable anywhere its
reference item may be used.

Fieldref,
XMethodref Class

MethodHandle

class

reference “API Point
Reference”*

*new concept

invokeX
getX, putX,
withfield

operand
(field or
method)

ldc, new
defaultvalue
Xnewarray
instanceof
checkcast

operand
(class or
interface)

parameter

reference

“Loadable
Constant”
(recursive)

Linkage*
*new“API Point

Name”*
*new concept

“API Point
Reference”
(recursive, to
class only)

(see Diagram 4.4-G)

ClassFile
structure

super_class
interfaces

Diagram 4.4-F(b). “API Point References”, all configurations
(These are also “API Point Names”, except Linkage constants.)

class

reference

Class

plain class

Fieldref,
XMethodref

Class

plain member

class

Linkage*

Class

species

Fieldref,
XMethodref

Linkage*

Class

species member

reference

class

XMethodref

Class

Linkage*

specialized
method

(in class)

reference reference

class

XMethodref

Linkage*

Class

reference

Linkage*

specialized
method

(in species)

Dynamic,
Linkage*
(recursive)

Diagram 4.4-G. “Loadable Constant” relations

Class,
MethodType,
MethodHandle

Anchor*,
Dynamic,

InvokeDynamic

String,
Integer,
Long,
Float,
Double

bootstrap_arguments

parameter

Linkage*
*new

ldc

operand
Parametric
attribute*

*new
anchor

“Loadable
Constant”

existing
concept

Type
Restriction
attribute*

*new

restriction

Note: A Linkage constant is only loadable if its
reference is loadable, i.e., a Class. Other Linkage
constants (e.g., of a Fieldref) are not loadable.

Diagram 4.4-H(a). Example constant pool:
non-parametric client of List<Point>

(resolution states are at right; all are invariant)

Utf8
j/u/List

Linkage
List[Point]

Class
List

IMethodref
L[P].get(int)

Utf8
pkg/Point

Class
Point

NameAndType
get(int)Obj

(CP entries)

Point.class

List.class

Anchor,
Species

(corresponding
CP entry
states)

Method ptr,
Anchor, TR

invoke-
interface

operand

Diagram 4.4-H(b). Example parametric interface
public interface List<T> { …get… }

ClassFile
this = j/u/List
interface = Collection[R.T]
Parametric = Anchor R

(self species reference, if any)

method_info
name = get
type = (int)Object
TypeRestriction = {R.T}
Parametric = Anchor R
Code = none (ACC_ABSTRACT)

Utf8
j/u/List

Class
List

Linkage
List[R.T]

Anchor R
BSM=…

ConDy
R.T

method_info
name = subList
type = (int,int)List
TypeRestriction = {List[R.T]}
Parametric = Anchor R
Code = none (ACC_ABSTRACT)

Diagram 4.4-H(c). Example parametric implementation
class ArrayList<T> implements List<T> { …get… }

Utf8
j/u/List

Linkage
List[R.T]

Class
List

ClassFile
this = j/u/ArrayList
interface = j/u/List[R.T]
Parametric = Anchor R

(self species reference, if any)

method_info
name = get
type = (int)Object
TypeRestriction = {R.T}
Parametric = Anchor R
Code = stuff using elements/A

Utf8
j/u/ArrayList

Class
ArrayList

Anchor R
BSM=…

ConDy
R.T field_info

name = elements
type = Object[]
TypeRestriction = {R.T[]}
Parametric = Anchor RConDy

R.T[]

Linkage
A…yList[R.T]

method_info
name = subList
type = (int,int)List
TypeRestriction = {List[R.T]}
Parametric = Anchor R
Code = stuff using elements/A

Diagram 4.4-H(d). Example parametric subclass
 class MyVector<T> extends ju.Vector<T> { …get… }
 class Vector<T> { … protected T[] elementData; … }

Utf8
j/u/Vector

Linkage
Vector[R.T]

Class
Vector

ClassFile
this = MyVector
super = j/u/Vector[R.T]
Parametric = Anchor R

(self species reference, if any)

method_info
name = get
type = (int)Object
TypeRestriction = {R.T}
Parametric = Anchor R
Code = (invariants, parametrics)

Utf8
MyVector

Class
MyVector

Anchor R
BSM=…

ConDy
R.T

Fieldref
V[T].el-Data

Linkage
MyVector[T]

NameAndType
elmData:Obj[]

getfield
name = elementData
type = Object[]
class = Vector[R.T]

possible type restriction⟿T[]

iload_1 aaload …

(bytecodes…)

Diagram 4.7-D(a). Parametric attribute relations

Anchor*

ClassFile

Parametric

Parametric*
*new attribute

field_info
method_info

Parametric

anchor

Diagram 4.7-D(b). TypeRestriction attribute relations

Type
Restriction
*new attribute

field_info
method_info

TypeRestriction

restriction(s)

Loadable
Constant
(recursive)

(see Diagram 4.4-G)

Diagram 4.4-H(d). Example parametric subclass
 class MyVector<T> extends ju.Vector<T> { …get… }
 class Vector<T> { … protected T[] elementData; … }

Utf8
j/u/Vector

Linkage
Vector[R.T]

Class
Vector

ClassFile
this = MyVector
super = j/u/Vector[R.T]
Parametric = Anchor R

(self species reference, if any)

method_info
name = get
type = (int)Object
TypeRestriction = {R.T}
Parametric = Anchor R
Code = (invariants, parametrics)

Utf8
MyVector

Class
MyVector

Anchor R
BSM=…

ConDy
R.T

Fieldref
V[T].el-Data

Linkage
MyVector[T]

NameAndType
elmData:Obj[]

getfield
name = elementData
type = Object[]
class = Vector[R.T]

possible type restriction⟿T[]

iload_1 aaload …

(bytecodes…)

Graph of existing and proposed relations among constant pool structures,
to support the “Parametric VM”.
Legend:

• A rectangular box shows one or more constant types. For example,
a box labeled Class represents a CONSTANT_Class_info structure.

• An arrow shows how one entity depends directly on another. For
example, String depends directly on the Utf8 which specifies its
characters.

• Arrows from boxes are labeled to show which item in a given
constant pool structure provides the index for the relation indicated
by the arrow.

• A circle shows, not a single constant type, but a conceptual group
of types, which are (for some uses) interchangeable. The
conceptual groups are Loadable Constant, API Point Reference,
and API Point Name.

• Box-headed arrows into a group circle show users of all the types
in the group, while arrows out of the circle indicate the group’s
types. Small dotted arrows show some routes through a group.

• A starred footnote of new indicates a proposed new constant type
or conceptual group of types. The new types are
SpecializationAnchor and SpecializationLinkage, or Anchor and
Linkage for short. The new conceptual groups are API Point
Reference and (a subset) API Point Name.

• An arrow with a blank head redirects to a different diagram.
• Recursion points are white, and stand in place of the corresponding

colored concept or constant type.
• A lozenge shaped box shows one or more instruction types.
• A box with rounded corners shows some other structure, such as

the new Parametric and TypeRestriction attributes.

	jvms-4.4-E
	jvms-4.4-F(a)
	jvms-4.4-F(b)
	jvms-4.4-G
	jvms-4.4-H(a)
	jvms-4.4-H(b)
	jvms-4.4-H(c)
	jvms-4.4-H(d)
	jvms-4.7-D(a)
	jvms-4.7-D(b)
	static call
	Legend

