
New Languages
on the JVM:

Pain Points and Remedies

January 28, 2008
John R. Rose, Sr. Staff Engineer
john.rose@sun.com
http://blogs.sun.com/jrose

2

Agenda
• Opportunities
• Problems
• Case studies
• Solutions
• Ruby and the JVM
• (Your item here...)

3

Opportunities...

• VM-based systems have become normal
• CPU cycles are cheap enough for JIT, GC, RTT, ...
• many Java programmers, tools, systems
• much of the ecosystem is now open-source

• VM-based systems have become normal
• CPU cycles are cheap enough for JIT, GC, RTT, ...
• many Java programmers, tools, systems
• much of the ecosystem is now open-source

4

Great (J)VM features

• flexible online code loading (with nice safe bytecodes)
• GC & object schema
• reflective access to classes & objects
• lots of ancillary tools (JMM, JVMTI, dtrace)
• good libraries & a nice language to write more
• optimizing JIT, object- and library-aware
• clever performance techniques:
> type inference, customization, profiling,

deoptimization, fast/slow paths, etc., etc.

5

Opportunities...

Bottom line...

VMs and tools are both mature and ubiquitous

• So what shall we build now...?
> partial answer: more languages!

• There seem to be about 200 JVM language implems:
http://robert-tolksdorf.de/vmlanguages.html

6

Opportunities...
High level languages often require:
• very late binding (runtime linking, typing, code gen.)
• automatic storage management (GC)
• environmental queries (reflection, stack walking)
• exotic primitives (tailcall, bignums, call/cc)
• code management integrated with execution
• robust handling of incorrect inputs
• helpful runtime support libraries (REs, math, ...)
• a compiler (JIT and/or AOT) that understands it all

7

Problems

• VMs can do much more than C/C++,
> but not quite enough for emerging languages
> historically, the JVM was for Java only...
> (historically the x86 was for C and Pascal...)

• Language implementors are trying to reuse Vms

> Near-misses are experienced as “pain points”

8

Case Study: Scheme

M. Serrano, “Bigloo.NET: compiling Scheme to
.NET CLR”, 2007

http://www-sop.inria.fr/mimosa/Manuel.Serrano/publi/jot04/jot04.html

• Uses the “natural style” for each platform (C/J/.N)
• Full continuations only in C (stack copy hack)
• Tailcall instruction in .N is too costly
• Closures poorly emulated by inner classes or delegates
• Bulky boxes for ints, pairs bloat the heap

9

Case Study: Python

Bolz & Rigo, “How to not write Virtual Machines for
Dynamic Languages”, 2007

http://dyla2007.unibe.ch/?download=dyla07-HowToNotWriteVMs.pdf
http://blogs.sun.com/jrose/entry/a_day_with_pypy

• PyPy provides extreme flexibility to implementors
• Demands extreme flexibility from its back-end
• Fine-grained path JIT, contextually customized types
• JIT blocks connected with expandable switch and tailcall
• Could still make great use of a suitably factored VM...

10

So what's missing?

• Dynamic invocation

• And always, higher performance

11

So what's missing?

• Dynamic invocation
• Lightweight method objects
• Lightweight bytecode loading
• Continuations and stack introspection
• Tail calls and tail recursion
• Tuples and value-oriented types
• Immediate wrapper types
• Symbolic freedom (non-Java names)
• And always, higher performance

12

the Da Vinci Machine

a multi-language renaissance
for the Java™ Virtual Machine
architecture

http://openjdk.java.net/
 /projects/mlvm/

12

13

A Solution from Sun

• Evolutionary adaptation of the present JVM
• Open-ended experimentation on Sun's Hotspot
> wild ideas are considered, but must prove useful
> while incubating, features are disabled by default

• Eventual convergence on standards
• Extension of the standard JVM architecture
> deliberate, measured, careful extension

14

Da Vinci Machine Mission Statement

• Prototype JVM extensions to run non-Java languages
efficiently
• First-class architectural support (not hacks or side-cars)
• Complete the existing architecture with general purpose

extensions
• New languages to co-exist gracefully with Java in the

JVM

15

Invented by Leonardo himself??

16

Dynamic invocation: A great idea

• non-Java call site in the bytecodes

• language-specific handler
> determines call linkage at runtime
> works in a reflective style
> installs direct (non-reflective) methods

• type-sensitive target method selection
• stateful: updated or revoked over time

17

Method handles

• Method Handle = lightweight reference to a method
• caller invokes without knowing method’s name, etc.
• call runs at nearly the speed of Java call
• required to glue together dynamic call sites
• requires VM and/or library support for common

adaptation patterns (curry, receiver check, varargs)

18

Anonymous classes

• Faster and more reliable loading and unloading
• Little interaction with system dict. or class loaders
> (“class names considered harmful”)

• Library-directed code customization
> via constant pool patching

19

Performance work

• No-brainer: Support less-static bytecode shapes
> Ongoing for years; see website for fixed bugs
> Examples: Class.isInstance, Arrays.copyOf

• Faster reflection
• More subtle: Faster closure-type objects
• Escape analysis (etc.) to remove auto-boxing
• Etc., etc.

20

Other great VM ideas
(which might need community champions)

• Interface injection (traits, mega-inheritance)
• Continuations (cf. Scheme call/cc)
• Value object (cf. Lisp fixnums)
• Tuple types (cf. .NET structs)

21

Are we re-inventing the world?

• No, we are adapting classic ideas to the JVM.
> In some cases, exposing mature JVM internals to

language implementors, for the first time.
> In other cases, adjusting JVM architecture to be less

Java-centric.
• Language implementors know what they want
> (and know how to simulate it with 100x slowdown)

• VM implementors know what VMs can do
> (and know how to make their favorite language sing)

• Let's bring them together.

22

Ruby
meets Duke

Charles Nutter, Sr. Staff Engineer
charles.nutter@sun.com
http://headius.blogspot.com/

23

JRuby Design: Lexer and Parser
• Hand-written lexer
> originally ported from MRI
> many changes since then

• LALR parser
> Port of MRI's YACC/Bison-based parser
>We use Jay, a Bison for Java

> DefaultRubyParser.y => DefaultRubyParser.java

• Abstract Syntax Tree similar to MRI's
> we've made a few changes/additions

24

JRuby Design: Core Classes
• Mostly 1:1 core classes to Java types
> String is RubyString, Array is RubyArray, etc

• Annotation-based method binding
public @interface JRubyMethod {
 String[] name() default {};
 int required() default 0;
 int optional() default 0;
 boolean rest() default false;
 String[] alias() default {};
 boolean meta() default false;
 boolean module() default false;
 boolean frame() default false;
 boolean scope() default false;
 boolean rite() default false;
 Visibility visibility() default

Visibility.PUBLIC;
}
...
@JRubyMethod(name = "open", required = 1, frame = true)

25

JRuby Design: Interpreter
• Simple switch-based AST walker
• Recurses for nested structures
• Most code starts out interpreted
> command-line scripts compiled immediately
> precompiled scripts (.class) instead of .rb
> eval'ed code always interpreted (for now)

• Reasonably straightforward code
• Future: generate the interpreter to reduce overhead

26

JRuby Compiler
• First complete Ruby 1.8 compiler for a general VM
• Fastest 1.8-compatible execution available
• AOT mode
> Avoids JIT warmup time
> Works well with “compile, run” development
> Maybe faster startup in future? (a bit slower right now)

• JIT mode
> Fits with typical Ruby “just run it” development
> Eventually as fast as AOT
> You don't have to do anything different

27

Compiler Pain
• AOT pain
> Code bodies as Java methods need method handles
>Generated as adapter methods...see JIT below

> Ruby is very terse...i.e. compiled output is verbose
> Mapping symbols safely (class, package, method names)

• JIT pain
> Method body must live on a class
>Class must be live in separate classloader to GC
>Class name must be unique within that classloader
>Gobs of memory used up working around all this

28

Compiler Optimizations
• Preallocated, cached Ruby literals
• Java opcodes for local flow-control where possible
> Explicit local “return” as cheap as implicit
> Explicit local “next”, “break”, etc simple jumps

• Java local variables when possible
> Methods and leaf closures
> leaf == no contained closures

> No eval(), binding(), etc calls present

• Monomorphic inline method cache
> Polymorphic for 1.1 (probably)

29

Optimization Pain
• “Build-your-own” dynamic invocation (always)
> Naïve approach fails to perform (hash lookup, reflection)

• “B-y-o” reflective method handle logic
> Handle-per-method means class+classloader per
> Overloaded signatures means more handles
> Non-overloading languages introduce arg boxing cost

• “B-y-o” call site optimizations
> ...and make sure they don't interfere with JVM optz!

• We shouldn't have to worry about all this

30

Custom Core Classes
• String as copy-on-write byte[] impl
• Array as copy-on-write Object[] impl
• Fast-read Hash implementation
• Java “New IO” (NIO) based IO implementation
> Example: implementing analogs for libc IO functions

• Two custom Regexp implementations
> New one works with byte[] directly

31

JRuby Design: Threading
• JRuby supports only native OS threads
> Much heavier than Ruby's green threads
> But truly parallel, unlike Ruby 1.9 (GIL)

• Emulates unsafe green operations
> Thread#kill, Thread#raise inherently unsafe
> Thread#critical impossible to guarantee
> All emulated with checkpoints (pain...)

• Pooling of OS threads minimizes spinup cost
> Spinning up threads from pool as cheap as green
> Future: used for coroutine support (Ruby 1.9's “Fiber”)

32

JRuby Design: Extensions, POSIX
• Normal Ruby native extensions not supported
> Maybe in future, but Ruby API exposes too much

• Native libraries accessible with JNA
> Not JNI...JNA = Java Native Access
> Programmatically load libs, call functions
> Similar to DL in Ruby
> Could easily be used for porting extensions

• JNA used for POSIX functions not in Java
> Filesystem support (symlinks, stat, chmod, chown, ...)
> Process control

Questions?
Let's talk...

John Rose
Charles Nutter

{john.rose,charles.nutter}@sun.com

