
Project	Leyden

Mark	Reinhold

Chief	Architect,	Java	Platform	Group,	Oracle

John	Rose

JVM	Senior	Architect,	Java	Platform	Group,	Oracle

JVM	Language	Summit

2023/8/8

Capturing	Lightning	in	a	Bottle

Copyright	©	2023,	Oracle	and/or	its	affiliates

Leyden:	Goal

2Copyright	©	2023,	Oracle	and/or	its	affiliates

Improve	the	startup	time,	warmup	time,	and	footprint

of	Java	programs

	 Shift	computation	temporally, 
	 	 later	and	earlier	in	time

	 Constrain	 Java’s	natural	dynamism, 
	 	 to	enable	more	and	better	shifting

	 Selectively,	per	the	needs	of	each	particular	program

	Compatibly,	 to	preserve	program	meaning

Leyden:	Means

3Copyright	©	2023,	Oracle	and/or	its	affiliates

• We	can	shift	two	kinds	of	computation

–Work	expressed	directly	by	a	program	(e.g.,	invoke	a	method)

–Work	done	on	behalf	of	a	program	(e.g.,	compile	a	method	to	native	code)

• Java	implementations	already	have	features	that	can	shift	computation

– Automatically:	 Compile-time	constant	folding	(shifts	EARLIER	in	time) 
	 Garbage	collection	(LATER)

–Or	optionally:	 Ahead-of-time	(AOT)	compilation	(EARLIER) 
	 Pre-digested	class-data	archives	(CDS)	(EARLIER) 
	 Lazy	class	loading	and	initialization	(LATER)

– Either	way,	always	preserving	program	meaning	per	the	Specification

• So	as	to	ensure	compatibility

Shifting	computation

4Copyright	©	2023,	Oracle	and/or	its	affiliates

• Some	kinds	of	shifting	will	likely	require	no	specification	changes

– E.g.,	expand	lambdas	into	ordinary	bytecode	(EARLIER)

• Others	will	definitely	require	specification	changes

– E.g.,	eliminate	dead	code	(stripping)	(EARLIER)

• Yet	others	will	be	new	platform	features	that	allow	developers 
to	express	temporal	shifting	directly	in	source	code

– E.g.,	lazy	static	final	fields	(LATER)

Leyden	will	explore	new	ways	to	shift	computation

5Copyright	©	2023,	Oracle	and/or	its	affiliates

https://openjdk.org/jeps/8209964

• Shifting	computation	often	requires	code	analysis

– But:	Java’s	dynamic	features	make	code	analysis	difficult

• We	could	simplify	code	analysis	by	imposing	a	closed-world	constraint

– Forbids	dynamic	class	loading	and	severely	limits	reflection

–Many	applications	don’t	work	under	this	constraint

–Many	developers	aren’t	willing	to	live	with	this	constraint

• Leyden	will	therefore	explore	a	spectrum	of	constraints, 
up	to	and	including	the	closed-world	constraint

– Selectively	degrade	Java’s	natural	dynamism 
to	enable	more	and	better	shifting	of	computation

– Developers	can	choose	how	to	trade	functionality	for	performance

Constraining	dynamism

6Copyright	©	2023,	Oracle	and/or	its	affiliates

• A	condenser	is	a	tool	in	the	JDK	that:

– Performs	some	of	the	computation	encoded	in	a	program	image

• Thereby	shifting	it	earlier	in	time

– Transforms	the	image	into	a	new,	faster	image	that	may	contain:

• New	code	(e.g.,	ahead-of-time	compiled	methods)

• New	data	(e.g.,	serialized	heap	objects)

• New	metadata	(e.g.,	pre-loaded	classes)

• New	constraints	(e.g.,	no	class	redefinition)

Condensers:	Tools	for	shifting	&	constraining	computation

7Copyright	©	2023,	Oracle	and/or	its	affiliates

The	key	new	concept	of	Leyden

• Condensers	are	meaning-preserving

– The	resulting	image	has	the	same	meaning	as	the	original

• Condensers	are	composable

– The	image	output	by	one	condenser	can	be	the	input	to	another

– A	particular	condenser	can	be	applied	multiple	times,	if	needed

• Condensers	are	selectable

– Developers	choose	how	to	condense,	and	when

• If	you’re	testing	or	debugging,	then	don’t	bother	—	just	run	normally

– Insofar	as	shifting	computation	requires	accepting	constraints,	you	can	trade	
functionality	for	performance	via	the	condensers	that	you	choose

Key	properties	of	condensers

8Copyright	©	2023,	Oracle	and/or	its	affiliates

• The	performance	of	your	program	depends	upon 
the	condensers	that	you	choose

• Given	sufficiently	powerful	condensers:

– If	you	shift	enough	computation	earlier	or	later	in	time, 
you	might	even	be	able	to	produce	a	fully-static	native	image

– This	will	likely	require	accepting	many	constraints

• Leyden	need	not	specify	fully-static	native	images	directly

– Instead,	it	will	enable	sufficient	shifting	of	computation 
and	constraining	of	dynamism

– Fully-static	native	images	can	fall	out	as	an	emergent	property

Performance	is	an	emergent	property

9Copyright	©	2023,	Oracle	and/or	its	affiliates

• Introduce	condensers	into	the	Java	Platform

– Evolve	the	Java	Platform	Specification	to	allow 
meaning-preserving	whole-program	transformations

– Evolve	the	run-time	image	format	to	accommodate 
new	code,	data,	and	metadata

• Explore	new	ways	to	shift	computation	and	constrain	dynamism

• Explore	related	improvements

Leyden	roadmap

10Copyright	©	2023,	Oracle	and/or	its	affiliates

• Introduce	condensers

– Toward	Condensers	(design	note,	Goetz,	Reinhold,	&	Sandoz)

• Shift	computation	and	constrain	dynamism

– Pre-generate	lambda	classes	(prototype	branch,	Heidinga)

– Condensing	Indy	Bootstraps	(design	note,	Goetz)

– Computed	Constants	(draft	JEP,	Minborg	&	Cimadamore)

– Experiments	in	shifting	speculative	compilation	(Rose	et	al.)

• Related	improvements

– Hermetic	application	packaging	(prototype	branch,	Zhou)

– JMOD-less	linking	(prototype,	Gehwolf)

Leyden	progress!

11Copyright	©	2023,	Oracle	and/or	its	affiliates

openjdk.org/projects/leyden

https://openjdk.org/projects/leyden/

Copyright	©	2023,	Oracle	and/or	its	affiliates 12

Project	Leyden

Mark	Reinhold

Chief	Architect,	Java	Platform	Group,	Oracle

John	Rose

JVM	Senior	Architect,	Java	Platform	Group,	Oracle

JVM	Language	Summit

2023/8/8

Capturing	Lightning	in	a	Bottle

Static	AOT	vs.	dynamic	JIT…	a	dilemma

• The	Java	answer	is	never	“Choose	One,	Lose	One”: 
Java	balances	both	static	and	dynamic	reasoning.

• HotSpot	speculatively	optimizes	dynamic	states, 
in	effect	converting	them	to	static	states.

• In	Leyden,	such	optimizations	can	be	shifted, 
speculatively	optimizing	before	app.	startup.

• Result:	Users	can	drive	startup	time	and	warmup	time	into	the	noise, 
maintaining	compatibility

– No	new	constraints,	no	code	change	required

13

(image	from	JVMLS	2010)

Copyright	©	2023,	Oracle	and/or	its	affiliates

• Startup	activity	is	setup	computation	to	get	through	a	first	task,	used	for	all	tasks.

• Startup	time	is	therefore	(at	most)	the	time	of	the	first	task,	less	other	tasks. 
Time[Startup]	≤	Time[Task	1]	-	Time[Task	2] 
Caveat:		Not	all	apps	have	a	repeatable	representative	task.		Take	with	grains	of	salt…

• Warmup	activity	is	optimization	effort	(by	JVM,	not	app)	to	reach	peak	performance.

• Peak	performance	may	be	defined	as	a	statistical	maximum,	minus	variance	(noise). 
(Noise	is	often	in	the	3-5%	range:	say	peak	is	reached	at	95%	throughput	or	better.)

• Warmup	time	is	therefore	the	time	it	takes	to	reach	95%	or	higher	of	eventual	peak.

• Startup	time	may	also	be	measured	as	time	to	reach	80%	(Pareto…)	of	eventual	peak. 
 
(This	is	the	startup	time	and	warmup	time	we	wish	to	drive	into	the	noise.)

Concepts	and	metrics	(some	definitions)

14Copyright	©	2023,	Oracle	and/or	its	affiliates

• x

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

online JIT activity for warmup
contributes to area between blue and gray,

measured in CPU seconds or minutes

<clinit> activity unique to first iteration,
measured in CPU milliseconds

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

A	tale	of	two	graphs:	What	startup	looks	like	today

15

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

• x

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal

<clinit> activity unique to first iteration,
measured in CPU milliseconds

online JIT activity for warmup
contributes to area between blue and gray,

measured in CPU seconds or minutes

note new time scale,
expanded from 20

measurements to 100

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

A	tale	of	two	graphs:	At	larger	scales	it’s	all	warmup

16

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

• x

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal

<clinit> activity unique to first iteration,
measured in CPU milliseconds

online JIT activity for warmup
contributes to area between blue and gray,

measured in CPU seconds or minutes

CHALLENGE: We wish to push the
blue line downward, closer to the

ideal. (“Closer” simply means less
total area between the curves.)

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

Challenge:	Make	startup/warmup	faster	at	multiple	scales

17

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

• Tiers	0..4	are	execution	modes,	transparent	except	for	performance.

• Tier	0	is	the	JVM	bytecode	interpreter.		It	collects	full	profiling.

• Tier	1	is	the	simplest	possible	(C1)	code.		No	profiling.		Use	is	rare.

• Tier	2	is	simple	code	with	profiling	at	method	entry	(only).		Limited	use.

• Tier	3	is	simple	code	which	also	collects	full	profiling.		Spins	up	quickly.

• Tier	4	is	optimized	code	which	benefits	from	profiling,	but	collects	none.

• Tier	4	may	de-optimize	on	awkward	inputs;	lower	Tiers	may	not.

• De-optimization	is	followed	by	further	profiling,	and	re-optimization.

HotSpot	Tiered	Compilation:	A	primer

18Copyright	©	2023,	Oracle	and/or	its	affiliates

HotSpot	Tiered	Compilation:	A	primer

19Copyright	©	2023,	Oracle	and/or	its	affiliates

T3 (C1 JIT)
handles inits
full profiling

T4 (JIT)
compiled after inits
re-opt. as needed

uses profile

deoptimization,
reprofiling

START

T2 (C1 JIT)
handles inits

limited profiling

T0 (interpreter)
handles inits
full profiling

JVM execution modes and transitions
in the standard HotSpot execution policy.

Rare T1 states are omitted.

JVM	execution	modes

and	transitions	in	the	standard

HotSpot	execution	policy.

(Rare	T1	states	are	omitted.)

• Startup	is	handled	by	slower	Tiers	0..3,	starting	with	the	interpreter.

• Startup	resolves	symbols,	runs	class	inits	(<clinit>),	runs	indy	BSMs.

• Warmup	happens	as	code	shifts	from	lower	tiers	to	higher	ones.

• First,	lower	tiers	must	gather	profiles	(execution	paths	and	types).

• The	JIT	then	uses	those	profiles	to	optimize	Tier	4	code.		This	takes	time.

• Peak	is	reached	when	(most)	code	stabilizes	in	the	highest	Tier	4.

Speedups	are	courtesy	of	HotSpot	Tiered	Compilation

20Copyright	©	2023,	Oracle	and/or	its	affiliates

• Leyden	can	shift	the	effort	of	collecting	profiles	and	generating	JIT	code.

• An	earlier	run	that	gathers	JVM	information	for	Leyden	is	a	training	run.

• A	later	run	that	uses	such	information	is	called	a	deployment	run.

• Some	initialization	states	can	be	recorded	for	replay	in	deployment.

• Persistent	profiles	gathered	in	training	can	be	applied	in	deployment.

• JIT	code	can	be	generated	at	startup	from	persistent	profiles.		(Helpful.)

• Or	else,	JIT	code	can	be	archived	AOT	for	fast	loading.		(Very	helpful!)

Leyden	can	shift	work	to	link,	profile,	initialize,	&	compile

21Copyright	©	2023,	Oracle	and/or	its	affiliates

• Definition:	A	training	run	is	a	representative	execution	of	an	application.

• Typical	inputs	and	config.	drive	training	run	startup	through	expected	paths	and	states.

• Preferably,	training	run	warmup	(repetitive	tasks)	leads	to	peak	performance.

• During	training,	the	JVM	gathers	initial	states,	profiles,	JIT	code,	into	CDS	and/or	logs. 
Optionally,	multiple	training	runs	are	executed,	and	resulting	logs	of	data	are	merged.

• The	application	is	then	distilled	(terminal	condensation	step)	into	the	optimized	version.

• Executing	the	optimized	application	is	called	a	deployment	run.

• The	deployment	run	starts	with	initial	states,	benefits	from	archived	profiles	and	code.

• Optionally	auto-train:	Hide	these	steps	“under	the	hood”	for	continuous	improvement. 
 
If	you	can	compose	a	system	benchmark,	you	can	compose	a	warmup	training	run.

Key	concepts:	How	training	prepares	for	deployment

22Copyright	©	2023,	Oracle	and/or	its	affiliates

• Java	has	always	been	both	static	and	dynamic:	Locally	static,	and	globally	dynamic.

• Training	runs,	which	observe	the	app,	are	the	dynamic	“flip	side”	of	static	app	analysis.

• We	can	use	a	Turing	Machine	(training)	to	exercise	another	T.	M.	(app),	capturing	
reusable	code	and	replayable	profile	and	data	states.

• Static	views,	though	rich,	tend	to	build	models	that	are	fragile,	“needy”	of	constraints.

• Dynamic	observations,	if	speculated,	can	be	used	as	if	they	were	statically	deduced.

• This	approach	copes	well	with	surprises	during	deployment.		It	is	not	surprising,	since	
on-the-fly	adaptation	is	Java’s	distinct	strength.		(Speculative	techniques	allow	for	
unplanned	futures;	this	is	a	HotSpot	core	competency.)

• During	deployment,	we	invisibly	re-optimize	JIT	states	captured	from	the	training	run.

The	unreasonable	effectiveness	of	training	runs

23Copyright	©	2023,	Oracle	and/or	its	affiliates

• We	can	now	persist	many	states	from	training	runs.		(See	next	slide.)

– Using	these	states	improves	startup/warmup	times	for	many	use	cases.

• Speculating	on	these	states	is	robust,	giving	balance	points	between	all-
static	and	all-dynamic	solutions.

–Many	recorded	states	can	softly	speculated,	not	firmly	constrained.

–With	speculative	optimizations,	success	is	a	habit,	but	failure	is	also	an	option.

• Online	adaptive	optimizations	(JIT	Tier	4)	still	get	best	performance.

–We	use	HotSpot’s	JIT	re-compilation	to	fill	lingering	performance	gaps.

• Policy	challenge:	Combine	the	old	and	new	tactics	as	needed,	smoothly.

Our	results	are	now	promising	enough	to	share

24Copyright	©	2023,	Oracle	and/or	its	affiliates

(image	from	JVMLS	2010)

• Class	file	events	and	other	historical	data:	
load,	link,	initialize	(<clinit>),	JIT	compiles.

• Resolution	of	API	points	and	indy	(stored	in	
constant	pool	images	in	the	CDS	archive).

• Execution	profiles,	code	(all	tiers).

• (And	more	later,	such	as	lazy	states…) 
 
Once	captured,	such	data	“looks	static”,	
helping	optimizations.			But	it	was	“born	
dynamic”.		And	it	can	change,	triggering 
re-optimization.

States	we	can	capture	from	training

25Copyright	©	2023,	Oracle	and/or	its	affiliates

• Key	idea:	premain,	a	specified	location	for	re-executing	recorded	actions.

– Java	defines	main	as	the	first	event	of	an	application.

– Leyden	adds	premain,	an	earlier	event.

– Premain	warms	up	the	application,	rebuilding	recorded	states	from	training	run.

• Some	states	which	evolve	from	training	runs	are	deemed	safe	to	
checkpoint.		Other	states	are	discarded.

– The	saved	states	from	training	are	formalized	as	premain	actions.

– Some	are	irreversible,	others	are	subject	to	speculation.

– The	JVM	can	(or	might	not)	use	CDS-like	tech	to	set	up	these	states	before	
deployment.		If	it	does,	it	appears	that	parts	of	premain	“run	super	fast”.

Can	this	be	made	safe	and	sane?

26Copyright	©	2023,	Oracle	and/or	its	affiliates

• Profiles	from	end	of	training	run	are	preserved	in	CDS,	for	online	re-optimization.

• Code	is	generated	throughout	training	run	and	stored	in	archive	for	use	with	CDS.

• Code	states	include	C1	(Tier	2	mainly)	and	optimized	code	(Tier	4).

• Code	not	classified	as	“hot”	(i.e.,	used	infrequently	or	only	for	setup)	stays	in	Tier	2. 
Improves	startup,	as	an	alternative	between	the	interpreter	and	aggressive	optimization.

• Code	is	loaded	from	archive	to	online	5x	to	500x	faster	than	recompilation!	

• Net	savings	can	be	seconds	or	even	minutes,	from	online	JIT	avoidance.

• More	savings	from	interpreter	avoidance:	The	app.	runs	JIT	code	immediately. 
Archived	code	can	de-opt	into	interpreter	for	corner	cases,	but	is	seldom	discarded.

• Using	the	best	available	archived	code	improves	startup	and	warmup	(time	to	peak).

• These	savings	are	significant.		They	can	make	the	2nd	task	run	fast	like	the	100th.

Archived	code	states	arise	from	training	run	warmup

27Copyright	©	2023,	Oracle	and/or	its	affiliates

• x

T3 (C1 JIT)
handles inits
full profiling

T4 (AOT)
init barriers
uses profile

T2 (C1 JIT)
handles inits

limited profiling

T4 (JIT)
compiled after inits
re-opt. as needed

uses profile

T4 (AOT)
init dependencies
re-opt. as needed

uses profile

default
policy

(untrained)

cooler
methods
(trained)

warmer
methods
(trained)

after
dependent

classes
load

deoptimization,
reprofiling

background
reoptimization

T2 (C1 AOT)
handles inits

limited profiling

START

T0 (interpreter)
handles inits
full profiling

JVM execution modes and transitions,
as extended by Project Leyden.

Note: Heavy lines mark new modes & transitions.
Rare T1 states are omitted.JVM	execution	modes	and	transitions	(new)

28

JVM	execution	modes	and	
transitions,	as	extended	by 

Project	Leyden.

Note:	Heavy	lines	mark	new	
modes	&	transitions.

• x

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

4. Highly-optimized code is installed from archive
 after deps ripen.

1. Classes are preloaded and prelinked.
2. Some indy/condy sites are pre-resolved.
3. Partially-optimized code with init-barriers
 is temporarily installed from archive until deps ripen.

5. Code may be reprofiled and reoptimized
 to better match deployment-time behavior.

N
O
TE:	ID

EA
LIZED

	M
O
D
EL

A	tale	of	three	graphs:	Better	startup

29

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

• x

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal improved

4. Highly-optimized code is installed from archive
 after deps ripen.

1. Classes are preloaded and prelinked.
2. Some indy/condy sites are pre-resolved.
3. Partially-optimized code with init-barriers
 is temporarily installed from archive until deps ripen.

5. Code may be reprofiled and reoptimized
 to better match deployment-time behavior.

N
O
TE:	ID

EA
LIZED

	M
O
D
EL

A	tale	of	three	graphs:	Better	warmup

30

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

• x

(c
um

ul
at

iv
e

tim
e

–
un

sp
ec

ifi
c

un
its

)

0

1000

2000

3000

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal improved

1. Classes are preloaded and prelinked.
2. Some indy/condy sites are pre-resolved.
3. Partially-optimized code with init-barriers
 is temporarily installed from archive until deps ripen.

5. Code may be reprofiled and reoptimized
 to better match deployment-time behavior.

4. Highly-optimized code is installed from archive
 after deps ripen.

N
O
TE:	ID

EA
LIZED

	M
O
D
EL

A	tale	of	three	graphs:	The	long-term	view

31

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

• Use	javac	to	compile	a	series	of	100	small	source	files.		First	task	triggers	startup. 
Each	sub-task	does	it	all	again,	and	discards	results.		Repetition	triggers	warmup.

• States	from	training	run	are	stored	in	CDS	archive	(with	JIT	cache). 
These	AOT	states	include	loaded	metadata,	selected	resolution	results. 
Indy	resolutions	include	hidden	class	metadata	and	method	handles	in	Java	heap. 
CDS	does	this	already,	but	this	use	is	broader	and	deeper	—	CDS	has	been	
underutilized!

• Init-barriers	code	(Tier	4,	C2)	traps	ONCE	to	interpreter	to	handle	<clinit>	events. 
Unlike	default	Tier	4,	init-barriers	code	has	a	usable	fast	path	after	<clinit>.

• Regular	archived	code	is	loaded	only	when	all	<clinit>	deps	“ripen”.

• When	most	or	all	archived	code	is	installed,	Tier	4	recompilation	begins. 
CAVEAT:	Work	in	progress.		More	tuning	needed	for	machinery,	policy,	user	model.

Case	study:		javac	startup,	warmup,	peak

32Copyright	©	2023,	Oracle	and/or	its	affiliates

0

150

300

450

600

1 4 7 10

baseline premain ideal

javac,	the	first	few	iterations

33

STARTUP

WARMUP

N
O
TE:	A

CTU
A
L	M

EA
SU

REM
EN

TS

0

25

50

75

100

1 34 67 100

baseline premain ideal

javac,	more	iterations,	showing	start	of	recompilation

34

←	STARTUP

WARMUP
RECOMPILATION

0

1750

3500

5250

7000

1 34 67 100 133 166 199

baseline premain ideal

javac,	viewed	cumulatively	(total	execution	time)

35

Tuning	and	policy	work	is	needed

	to	bring	down	the	green	line	further.

0

11

22

33

44

55

baseline premain ideal

javac,	in	the	longest	time	scales,	experiences	GC	noise

36

PEAK

WARMUP

RECOMPILE	CONTINUALLY	…

←	STARTUP Integral	
millisecond	
scale	shows	
quantization	
noise	also.

The	baseline	
policy	is	still	
champion,

for	now.

But	it	is

early	days.

• It	works:		We	can	shift	computation	to	premain,	via	CDS	back	to	training	runs.

• There	are	lots	of	startup	and	warmup	states	to	push	back	to	premain.

• There	is	no	one	“magic	bullet”	technique.		Let’s	keep	hunting	for	more.

• Multiple	time-scales	(of	warmup)	are	important.		Let’s	try	to	chase	them	all.

• When	AOT	stuff	can	go	wrong,	use	JIT	re-optimization	as	a	fallback.

• Machinery	doesn’t	tune	itself.		Well-tuned	policy	is	a	way	of	life,	not	a	possession.

Lessons	from	javac	case	study

37Copyright	©	2023,	Oracle	and/or	its	affiliates

Case	study:		JVM2008	XML	validation	benchmark

38Copyright	©	2023,	Oracle	and/or	its	affiliates

XML Validation, lower is better

m
ill

is
ec

on
ds

 p
er

 o
p

100

225

350

475

600

seconds (samples)
0 5 10 15 20 25 30

baseline
CDS only (no archived code)
premain (with archived code)

one-second	samplesstartup	is	instant

(within	first	second)

average	op	time,	sampled	at	1	second	intervals,	lower	is	better

• Sometimes	startup	is	the	only	interesting	win;	warmup	is	already	OK	for	smaller	apps.

• In	this	case,	we	can	decisively	improve	startup,	compared	to	the	baseline	policy.

• Benchmark	noise	can	make	it	hard	to	decide	where	is	the	peak	performance.

• Over	time,	the	baseline	policy	still	seems	to	win	by	a	hair;	this	may	need	more	work.

Lessons	from	XML	validation	case	study

39Copyright	©	2023,	Oracle	and/or	its	affiliates

Case	study:		Spring	Boot	application	framework	startup

40

Spring v3.1.2 Hello World boot times
seconds, average of 3 runs, lower is better

0.400

0.800

1.200

1.600

wall clock from JVM boot Spring self-measurement

default (JDK 22)
AppCDS only (no premain)
premain (no indy or clinit)
premain (no clinit)
premain
SBaot + PM (no indy, clinit)
SBaot + PM (no clinit)
SBaot + premain

Spring	v3.1.2	Hello	
World	boot	times	
for	premain,	with	
and	without	various	
options.

Time	in	seconds,	
average	of	3	runs,	
lower	is	better

wall	clock	from	JVM	boot Spring	self-measurement

• There	are	many	tactics	which	can	improve	startup.

• We	win	big	because	the	tactics	all	work	in	synergy	(are	not	mutually	exclusive).

• AppCDS	is	a	win,	back-shifting	loading	and	resolution	through	premain. 
Code	archiving	is	further	win,	back-shifting	JIT	work	through	premain.

• Back-shifting	indy	resolution	states	unlocks	further	optimizations. 
The	clever	Tier	4	code	which	checks	for	<clinit>	wins,	but	only	a	little.

• Low-level	JVM	metrics	give	a	little	more	data	than	Spring	self-reported	time.

Lessons	from	Spring	Boot	case	study

41Copyright	©	2023,	Oracle	and/or	its	affiliates

• For	now,	premain	activities	are	derived	automatically	from	training	runs.

• Optimizable	states	generated	by	premain	are	dumped	into	the	CDS/JIT	archive. 
(Other	premain	states	are	dropped,	assumed	to	be	reconstructed	at	deployment.)

• In	the	future,	user-defined	activities	can	march	in	this	parade,	as	well. 
This	requires	work	on	characterizing	which	of	those	activities	are	trusted	as	pure.

• No	loss	of	Java’s	natural	dynamism,	no	new	constraints	on	the	programming	model.

• Need	user-friendly	workflows	(not	flag	soup):	multi-run	condensation,	“auto-train”. 
This	requires	more	work	on	moving	CDS/JIT	states	into	log	files	and	vice	versa.

• Plenty	of	additional	opportunity	for	performance	tuning,	policy	integration,	JIT	work. 
 
There	is	so	much	more	we	can	do.		Join	us!	 openjdk.org/projects/leyden

Current	status	of	premain	work:	Fresh	beginnings

42Copyright	©	2023,	Oracle	and/or	its	affiliates

https://openjdk.org/projects/leyden/

Questions?

43Copyright	©	2023,	Oracle	and/or	its	affiliates

openjdk.org/projects/leyden

https://openjdk.org/projects/leyden/

Project	Leyden

Mark	Reinhold

Chief	Architect,	Java	Platform	Group,	Oracle

John	Rose

JVM	Senior	Architect,	Java	Platform	Group,	Oracle

JVM	Language	Summit

2023/8/8

Capturing	Lightning	in	a	Bottle

Copyright	©	2023,	Oracle	and/or	its	affiliates

