
Project	Leyden

Mark	Reinhold	
Chief	Architect,	Java	Pla1orm	Group,	Oracle	

John	Rose	
JVM	Senior	Architect,	Java	Pla1orm	Group,	Oracle	

JVM	Language	Summit	
2023/8/8

Capturing	Lightning	in	a	Bo?le	

Copyright	©	2023,	Oracle	and/or	its	affiliates

Leyden:	Goal

2Copyright	©	2023,	Oracle	and/or	its	affiliates

Improve	the	startup	time,	warmup	time,	and	footprint	
of	Java	programs

	 Shi$	computaHon	temporally,	
	 	 later	and	earlier	in	Hme	

	 Constrain	 Java’s	natural	dynamism,	
	 	 to	enable	more	and	beLer	shiMing	

	 Selec0vely,	per	the	needs	of	each	parHcular	program	

	Compa0bly,	 to	preserve	program	meaning

Leyden:	Means

3Copyright	©	2023,	Oracle	and/or	its	affiliates

• We	can	shiM	two	kinds	of	computaHon	
–Work	expressed	directly	by	a	program	(e.g.,	invoke	a	method)	

–Work	done	on	behalf	of	a	program	(e.g.,	compile	a	method	to	naHve	code)	

• Java	implementaHons	already	have	features	that	can	shiM	computaHon	
– AutomaHcally:	 Compile-Hme	constant	folding	(shiMs	EARLIER	in	Hme)	
	 Garbage	collecHon	(LATER)	

–Or	opHonally:	 Ahead-of-Hme	(AOT)	compilaHon	(EARLIER)	
	 Pre-digested	class-data	archives	(CDS)	(EARLIER)	
	 Lazy	class	loading	and	iniHalizaHon	(LATER)	

– Either	way,	always	preserving	program	meaning	per	the	SpecificaHon	
• So	as	to	ensure	compaHbility

ShiMing	computaHon

4Copyright	©	2023,	Oracle	and/or	its	affiliates

• Some	kinds	of	shiMing	will	likely	require	no	specificaHon	changes	
– E.g.,	expand	lambdas	into	ordinary	bytecode	(EARLIER)	

• Others	will	definitely	require	specificaHon	changes	
– E.g.,	eliminate	dead	code	(stripping)	(EARLIER)	

• Yet	others	will	be	new	pla^orm	features	that	allow	developers	
to	express	temporal	shiMing	directly	in	source	code	
– E.g.,	lazy	staHc	final	fields	(LATER)

Leyden	will	explore	new	ways	to	shiM	computaHon

5Copyright	©	2023,	Oracle	and/or	its	affiliates

https://openjdk.org/jeps/8209964

• ShiMing	computaHon	oMen	requires	code	analysis	
– But:	Java’s	dynamic	features	make	code	analysis	difficult	

• We	could	simplify	code	analysis	by	imposing	a	closed-world	constraint	
– Forbids	dynamic	class	loading	and	severely	limits	reflecHon	

–Many	applicaHons	don’t	work	under	this	constraint	

–Many	developers	aren’t	willing	to	live	with	this	constraint	

• Leyden	will	therefore	explore	a	spectrum	of	constraints,	
up	to	and	including	the	closed-world	constraint	
– Selec0vely	degrade	Java’s	natural	dynamism	
to	enable	more	and	beLer	shiMing	of	computaHon	

– Developers	can	choose	how	to	trade	funcHonality	for	performance

Constraining	dynamism

6Copyright	©	2023,	Oracle	and/or	its	affiliates

• A	condenser	is	a	tool	in	the	JDK	that:	
– Performs	some	of	the	computaHon	encoded	in	a	program	image	
• Thereby	shiMing	it	earlier	in	Hme	

– Transforms	the	image	into	a	new,	faster	image	that	may	contain:	
• New	code	(e.g.,	ahead-of-Hme	compiled	methods)	
• New	data	(e.g.,	serialized	heap	objects)	
• New	metadata	(e.g.,	pre-loaded	classes)	
• New	constraints	(e.g.,	no	class	redefiniHon)

Condensers:	Tools	for	shiMing	&	constraining	computaHon

7Copyright	©	2023,	Oracle	and/or	its	affiliates

The	key	new	concept	of	Leyden

• Condensers	are	meaning-preserving	
– The	resulHng	image	has	the	same	meaning	as	the	original	

• Condensers	are	composable	
– The	image	output	by	one	condenser	can	be	the	input	to	another	

– A	parHcular	condenser	can	be	applied	mulHple	Hmes,	if	needed	

• Condensers	are	selectable	
– Developers	choose	how	to	condense,	and	when	
• If	you’re	tesHng	or	debugging,	then	don’t	bother	—	just	run	normally	

– Insofar	as	shiMing	computaHon	requires	accepHng	constraints,	you	can	trade	
funcHonality	for	performance	via	the	condensers	that	you	choose

Key	properHes	of	condensers

8Copyright	©	2023,	Oracle	and/or	its	affiliates

• The	performance	of	your	program	depends	upon	
the	condensers	that	you	choose	

• Given	sufficiently	powerful	condensers:	
– If	you	shiM	enough	computaHon	earlier	or	later	in	Hme,	
you	might	even	be	able	to	produce	a	fully-staHc	naHve	image	

– This	will	likely	require	accepHng	many	constraints	

• Leyden	need	not	specify	fully-staHc	naHve	images	directly	
– Instead,	it	will	enable	sufficient	shiMing	of	computaHon	
and	constraining	of	dynamism	

– Fully-staHc	naHve	images	can	fall	out	as	an	emergent	property

Performance	is	an	emergent	property

9Copyright	©	2023,	Oracle	and/or	its	affiliates

• Introduce	condensers	into	the	Java	Pla^orm	
– Evolve	the	Java	Pla^orm	SpecificaHon	to	allow	
meaning-preserving	whole-program	transformaHons	

– Evolve	the	run-Hme	image	format	to	accommodate	
new	code,	data,	and	metadata	

• Explore	new	ways	to	shiM	computaHon	and	constrain	dynamism	

• Explore	related	improvements

Leyden	roadmap

10Copyright	©	2023,	Oracle	and/or	its	affiliates

• Introduce	condensers	
– Toward	Condensers	(design	note,	Goetz,	Reinhold,	&	Sandoz)	

• ShiM	computaHon	and	constrain	dynamism	
– Pre-generate	lambda	classes	(prototype	branch,	Heidinga)	

– Condensing	Indy	Bootstraps	(design	note,	Goetz)	
– Computed	Constants	(draM	JEP,	Minborg	&	Cimadamore)	

– Experiments	in	shiMing	speculaHve	compilaHon	(Rose	et	al.)	

• Related	improvements	
– HermeHc	applicaHon	packaging	(prototype	branch,	Zhou)	

– JMOD-less	linking	(prototype,	Gehwolf)

Leyden	progress!

11Copyright	©	2023,	Oracle	and/or	its	affiliates

openjdk.org/projects/leyden

https://openjdk.org/projects/leyden/

Copyright	©	2023,	Oracle	and/or	its	affiliates 12

Project	Leyden

Mark	Reinhold	
Chief	Architect,	Java	Pla1orm	Group,	Oracle	

John	Rose	
JVM	Senior	Architect,	Java	Pla1orm	Group,	Oracle	

JVM	Language	Summit	
2023/8/8

Capturing	Lightning	in	a	Bo?le	

StaHc	AOT	vs.	dynamic	JIT…	a	dilemma

• The	Java	answer	is	never	“Choose	One,	Lose	One”:	
Java	balances	both	staHc	and	dynamic	reasoning.	

• HotSpot	speculaHvely	op0mizes	dynamic	states,	
in	effect	converHng	them	to	staHc	states.	

• In	Leyden,	such	opHmizaHons	can	be	shiMed,	
speculaHvely	opHmizing	before	app.	startup.	

• Result:	Users	can	drive	startup	Hme	and	warmup	Hme	into	the	noise,	
maintaining	compa0bility	
– No	new	constraints,	no	code	change	required

13

(image	from	JVMLS	2010)

Copyright	©	2023,	Oracle	and/or	its	affiliates

• Startup	ac0vity	is	setup	computaHon	to	get	through	a	first	task,	used	for	all	tasks.	

• Startup	0me	is	therefore	(at	most)	the	Hme	of	the	first	task,	less	other	tasks.	
Time[Startup]	≤	Time[Task	1]	-	Time[Task	2]	
Caveat:		Not	all	apps	have	a	repeatable	representaNve	task.		Take	with	grains	of	salt…	

• Warmup	ac0vity	is	opHmizaHon	effort	(by	JVM,	not	app)	to	reach	peak	performance.	

• Peak	performance	may	be	defined	as	a	staHsHcal	maximum,	minus	variance	(noise).	
(Noise	is	oMen	in	the	3-5%	range:	say	peak	is	reached	at	95%	throughput	or	beLer.)	

• Warmup	0me	is	therefore	the	Hme	it	takes	to	reach	95%	or	higher	of	eventual	peak.	

• Startup	0me	may	also	be	measured	as	Hme	to	reach	80%	(Pareto…)	of	eventual	peak.	
	
(This	is	the	startup	Nme	and	warmup	Nme	we	wish	to	drive	into	the	noise.)

Concepts	and	metrics	(some	definiHons)

14Copyright	©	2023,	Oracle	and/or	its	affiliates

• x

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

online JIT activity for warmup
contributes to area between blue and gray,

measured in CPU seconds or minutes

<clinit> activity unique to first iteration,
measured in CPU milliseconds

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

A	tale	of	two	graphs:	What	startup	looks	like	today

15

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

• x

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal

<clinit> activity unique to first iteration,
measured in CPU milliseconds

online JIT activity for warmup
contributes to area between blue and gray,

measured in CPU seconds or minutes

note new time scale,
expanded from 20

measurements to 100

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

A	tale	of	two	graphs:	At	larger	scales	it’s	all	warmup

16

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

• x

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal

<clinit> activity unique to first iteration,
measured in CPU milliseconds

online JIT activity for warmup
contributes to area between blue and gray,

measured in CPU seconds or minutes

CHALLENGE: We wish to push the
blue line downward, closer to the

ideal. (“Closer” simply means less
total area between the curves.)

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

Challenge:	Make	startup/warmup	faster	at	mulHple	scales

17

N
O

T
E: ID

EA
LIZED

 M
O

D
EL

• Tiers	0..4	are	execuHon	modes,	transparent	except	for	performance.	

• Tier	0	is	the	JVM	bytecode	interpreter.		It	collects	full	profiling.	

• Tier	1	is	the	simplest	possible	(C1)	code.		No	profiling.		Use	is	rare.	

• Tier	2	is	simple	code	with	profiling	at	method	entry	(only).		Limited	use.	

• Tier	3	is	simple	code	which	also	collects	full	profiling.		Spins	up	quickly.	

• Tier	4	is	opHmized	code	which	benefits	from	profiling,	but	collects	none.	

• Tier	4	may	de-opHmize	on	awkward	inputs;	lower	Tiers	may	not.	

• De-opHmizaHon	is	followed	by	further	profiling,	and	re-opHmizaHon.

HotSpot	Tiered	CompilaHon:	A	primer

18Copyright	©	2023,	Oracle	and/or	its	affiliates

HotSpot	Tiered	CompilaHon:	A	primer

19Copyright	©	2023,	Oracle	and/or	its	affiliates

T3 (C1 JIT)
handles inits
full profiling

T4 (JIT)
compiled after inits
re-opt. as needed

uses profile

deoptimization,
reprofiling

START

T2 (C1 JIT)
handles inits

limited profiling

T0 (interpreter)
handles inits
full profiling

JVM execution modes and transitions
in the standard HotSpot execution policy.

Rare T1 states are omitted.

JVM	execution	modes	
and	transitions	in	the	standard	

HotSpot	execution	policy.	

(Rare	T1	states	are	omitted.)

• Startup	is	handled	by	slower	Tiers	0..3,	starHng	with	the	interpreter.	
• Startup	resolves	symbols,	runs	class	inits	(<clinit>),	runs	indy	BSMs.	

• Warmup	happens	as	code	shiMs	from	lower	Hers	to	higher	ones.	

• First,	lower	Hers	must	gather	profiles	(execuHon	paths	and	types).	

• The	JIT	then	uses	those	profiles	to	op0mize	Tier	4	code.		This	takes	Hme.	

• Peak	is	reached	when	(most)	code	stabilizes	in	the	highest	Tier	4.

Speedups	are	courtesy	of	HotSpot	Tiered	CompilaHon

20Copyright	©	2023,	Oracle	and/or	its	affiliates

• Leyden	can	shiM	the	effort	of	collecHng	profiles	and	generaHng	JIT	code.	
• An	earlier	run	that	gathers	JVM	informaHon	for	Leyden	is	a	training	run.	

• A	later	run	that	uses	such	informaHon	is	called	a	deployment	run.	

• Some	iniHalizaHon	states	can	be	recorded	for	replay	in	deployment.	

• Persistent	profiles	gathered	in	training	can	be	applied	in	deployment.	

• JIT	code	can	be	generated	at	startup	from	persistent	profiles.		(Helpful.)	

• Or	else,	JIT	code	can	be	archived	AOT	for	fast	loading.		(Very	helpful!)

Leyden	can	shiM	work	to	link,	profile,	iniHalize,	&	compile

21Copyright	©	2023,	Oracle	and/or	its	affiliates

• DefiniHon:	A	training	run	is	a	representaHve	execuHon	of	an	applicaHon.	
• Typical	inputs	and	config.	drive	training	run	startup	through	expected	paths	and	states.	
• Preferably,	training	run	warmup	(repeHHve	tasks)	leads	to	peak	performance.	

• During	training,	the	JVM	gathers	iniHal	states,	profiles,	JIT	code,	into	CDS	and/or	logs.	
OpHonally,	mulHple	training	runs	are	executed,	and	resulHng	logs	of	data	are	merged.	

• The	applicaHon	is	then	dis0lled	(terminal	condensaHon	step)	into	the	opHmized	version.	

• ExecuHng	the	opHmized	applicaHon	is	called	a	deployment	run.	

• The	deployment	run	starts	with	iniHal	states,	benefits	from	archived	profiles	and	code.	

• OpHonally	auto-train:	Hide	these	steps	“under	the	hood”	for	conHnuous	improvement.	
	
If	you	can	compose	a	system	benchmark,	you	can	compose	a	warmup	training	run.

Key	concepts:	How	training	prepares	for	deployment

22Copyright	©	2023,	Oracle	and/or	its	affiliates

• Java	has	always	been	both	staHc	and	dynamic:	Locally	staHc,	and	globally	dynamic.	

• Training	runs,	which	observe	the	app,	are	the	dynamic	“flip	side”	of	staHc	app	analysis.	

• We	can	use	a	Turing	Machine	(training)	to	exercise	another	T.	M.	(app),	capturing	
reusable	code	and	replayable	profile	and	data	states.	

• StaHc	views,	though	rich,	tend	to	build	models	that	are	fragile,	“needy”	of	constraints.	

• Dynamic	observaHons,	if	speculated,	can	be	used	as	if	they	were	staHcally	deduced.	

• This	approach	copes	well	with	surprises	during	deployment.		It	is	not	surprising,	since	
on-the-fly	adaptaHon	is	Java’s	disHnct	strength.		(SpeculaHve	techniques	allow	for	
unplanned	futures;	this	is	a	HotSpot	core	competency.)	

• During	deployment,	we	invisibly	re-opHmize	JIT	states	captured	from	the	training	run.

The	unreasonable	effecHveness	of	training	runs

23Copyright	©	2023,	Oracle	and/or	its	affiliates

• We	can	now	persist	many	states	from	training	runs.		(See	next	slide.)	
– Using	these	states	improves	startup/warmup	Hmes	for	many	use	cases.	

• SpeculaHng	on	these	states	is	robust,	giving	balance	points	between	all-
staHc	and	all-dynamic	soluHons.	
–Many	recorded	states	can	soMly	speculated,	not	firmly	constrained.	

–With	speculaHve	opHmizaHons,	success	is	a	habit,	but	failure	is	also	an	opHon.	

• Online	adapHve	opHmizaHons	(JIT	Tier	4)	sHll	get	best	performance.	
–We	use	HotSpot’s	JIT	re-compilaHon	to	fill	lingering	performance	gaps.	

• Policy	challenge:	Combine	the	old	and	new	tacHcs	as	needed,	smoothly.

Our	results	are	now	promising	enough	to	share

24Copyright	©	2023,	Oracle	and/or	its	affiliates

(image	from	JVMLS	2010)

• Class	file	events	and	other	historical	data:	
load,	link,	iniHalize	(<clinit>),	JIT	compiles.	

• ResoluHon	of	API	points	and	indy	(stored	in	
constant	pool	images	in	the	CDS	archive).	

• ExecuHon	profiles,	code	(all	Hers).	
• (And	more	later,	such	as	lazy	states…)	
	
Once	captured,	such	data	“looks	staNc”,	
helping	opNmizaNons.			But	it	was	“born	
dynamic”.		And	it	can	change,	triggering	
re-opNmizaNon.

States	we	can	capture	from	training

25Copyright	©	2023,	Oracle	and/or	its	affiliates

• Key	idea:	premain,	a	specified	locaHon	for	re-execuHng	recorded	acHons.	
– Java	defines	main	as	the	first	event	of	an	applicaHon.	

– Leyden	adds	premain,	an	earlier	event.	

– Premain	warms	up	the	applicaHon,	rebuilding	recorded	states	from	training	run.	

• Some	states	which	evolve	from	training	runs	are	deemed	safe	to	
checkpoint.		Other	states	are	discarded.	
– The	saved	states	from	training	are	formalized	as	premain	acHons.	

– Some	are	irreversible,	others	are	subject	to	speculaHon.	

– The	JVM	can	(or	might	not)	use	CDS-like	tech	to	set	up	these	states	before	
deployment.		If	it	does,	it	appears	that	parts	of	premain	“run	super	fast”.

Can	this	be	made	safe	and	sane?

26Copyright	©	2023,	Oracle	and/or	its	affiliates

• Profiles	from	end	of	training	run	are	preserved	in	CDS,	for	online	re-opHmizaHon.	

• Code	is	generated	throughout	training	run	and	stored	in	archive	for	use	with	CDS.	
• Code	states	include	C1	(Tier	2	mainly)	and	opHmized	code	(Tier	4).	

• Code	not	classified	as	“hot”	(i.e.,	used	infrequently	or	only	for	setup)	stays	in	Tier	2.	
Improves	startup,	as	an	alternaHve	between	the	interpreter	and	aggressive	opHmizaHon.	

• Code	is	loaded	from	archive	to	online	5x	to	500x	faster	than	recompilaHon!		

• Net	savings	can	be	seconds	or	even	minutes,	from	online	JIT	avoidance.	

• More	savings	from	interpreter	avoidance:	The	app.	runs	JIT	code	immediately.	
Archived	code	can	de-opt	into	interpreter	for	corner	cases,	but	is	seldom	discarded.	

• Using	the	best	available	archived	code	improves	startup	and	warmup	(Hme	to	peak).	

• These	savings	are	significant.		They	can	make	the	2nd	task	run	fast	like	the	100th.

Archived	code	states	arise	from	training	run	warmup

27Copyright	©	2023,	Oracle	and/or	its	affiliates

• x

T3 (C1 JIT)
handles inits
full profiling

T4 (AOT)
init barriers
uses profile

T2 (C1 JIT)
handles inits

limited profiling

T4 (JIT)
compiled after inits
re-opt. as needed

uses profile

T4 (AOT)
init dependencies
re-opt. as needed

uses profile

default
policy

(untrained)

cooler
methods
(trained)

warmer
methods
(trained)

after
dependent

classes
load

deoptimization,
reprofiling

background
reoptimization

T2 (C1 AOT)
handles inits

limited profiling

START

T0 (interpreter)
handles inits
full profiling

JVM execution modes and transitions,
as extended by Project Leyden.

Note: Heavy lines mark new modes & transitions.
Rare T1 states are omitted.JVM	execuHon	modes	and	transiHons	(new)

28

JVM	execution	modes	and	
transitions,	as	extended	by	

Project	Leyden.	

Note:	Heavy	lines	mark	new	
modes	&	transitions.	

• x

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

4. Highly-optimized code is installed from archive
 after deps ripen.

1. Classes are preloaded and prelinked.
2. Some indy/condy sites are pre-resolved.
3. Partially-optimized code with init-barriers
 is temporarily installed from archive until deps ripen.

5. Code may be reprofiled and reoptimized
 to better match deployment-time behavior.

N
O
TE:	ID

EA
LIZED

	M
O
D
EL

A	tale	of	three	graphs:	BeLer	startup

29

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

• x

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal improved

4. Highly-optimized code is installed from archive
 after deps ripen.

1. Classes are preloaded and prelinked.
2. Some indy/condy sites are pre-resolved.
3. Partially-optimized code with init-barriers
 is temporarily installed from archive until deps ripen.

5. Code may be reprofiled and reoptimized
 to better match deployment-time behavior.

N
O
TE:	ID

EA
LIZED

	M
O
D
EL

A	tale	of	three	graphs:	BeLer	warmup

30

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

• x

(c
um

ul
at

iv
e

tim
e

–
un

sp
ec

ifi
c

un
its

)

0

1000

2000

3000

(100 task repetitions – unspecific task)
1 10 19 28 37 46 55 64 73 82 91 100

typical ideal improved

1. Classes are preloaded and prelinked.
2. Some indy/condy sites are pre-resolved.
3. Partially-optimized code with init-barriers
 is temporarily installed from archive until deps ripen.

5. Code may be reprofiled and reoptimized
 to better match deployment-time behavior.

4. Highly-optimized code is installed from archive
 after deps ripen.

N
O
TE:	ID

EA
LIZED

	M
O
D
EL

A	tale	of	three	graphs:	The	long-term	view

31

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal improved

(ti
m

e
pe

r s
in

gl
e

ta
sk

 –
 u

ns
pe

ci
fic

 u
ni

ts
)

0

100

200

300

(20 task repetitions – unspecific task)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

typical ideal

• Use	javac	to	compile	a	series	of	100	small	source	files.		First	task	triggers	startup.	
Each	sub-task	does	it	all	again,	and	discards	results.		RepeHHon	triggers	warmup.	

• States	from	training	run	are	stored	in	CDS	archive	(with	JIT	cache).	
These	AOT	states	include	loaded	metadata,	selected	resoluHon	results.	
Indy	resoluHons	include	hidden	class	metadata	and	method	handles	in	Java	heap.	
CDS	does	this	already,	but	this	use	is	broader	and	deeper	—	CDS	has	been	
underuNlized!	

• Init-barriers	code	(Tier	4,	C2)	traps	ONCE	to	interpreter	to	handle	<clinit>	events.	
Unlike	default	Tier	4,	init-barriers	code	has	a	usable	fast	path	aMer	<clinit>.	

• Regular	archived	code	is	loaded	only	when	all	<clinit>	deps	“ripen”.	
• When	most	or	all	archived	code	is	installed,	Tier	4	recompilaHon	begins.	
CAVEAT:	Work	in	progress.		More	tuning	needed	for	machinery,	policy,	user	model.

Case	study:		javac	startup,	warmup,	peak

32Copyright	©	2023,	Oracle	and/or	its	affiliates

0

150

300

450

600

1 4 7 10

baseline premain ideal

javac,	the	first	few	iteraHons

33

STARTUP

WARMUP

N
O
TE:	A

CTU
A
L	M

EA
SU

REM
EN

TS

0

25

50

75

100

1 34 67 100

baseline premain ideal

javac,	more	iteraHons,	showing	start	of	recompilaHon

34

←	STARTUP

WARMUP
RECOMPILATION

0

1750

3500

5250

7000

1 34 67 100 133 166 199

baseline premain ideal

javac,	viewed	cumulaHvely	(total	execuHon	Hme)

35

Tuning	and	policy	work	is	needed	
	to	bring	down	the	green	line	further.

0

11

22

33

44

55

baseline premain ideal

javac,	in	the	longest	Hme	scales,	experiences	GC	noise

36

PEAK

WARMUP

RECOMPILE	CONTINUALLY	…

←	STARTUP Integral	
millisecond	
scale	shows	
quantization	
noise	also.	

The	baseline	
policy	is	still	
champion,	
for	now.	

But	it	is	
early	days.

• It	works:		We	can	shiM	computaHon	to	premain,	via	CDS	back	to	training	runs.	

• There	are	lots	of	startup	and	warmup	states	to	push	back	to	premain.	

• There	is	no	one	“magic	bullet”	technique.		Let’s	keep	hunHng	for	more.	

• MulHple	Hme-scales	(of	warmup)	are	important.		Let’s	try	to	chase	them	all.	

• When	AOT	stuff	can	go	wrong,	use	JIT	re-opHmizaHon	as	a	fallback.	

• Machinery	doesn’t	tune	itself.		Well-tuned	policy	is	a	way	of	life,	not	a	possession.

Lessons	from	javac	case	study

37Copyright	©	2023,	Oracle	and/or	its	affiliates

Case	study:		JVM2008	XML	validaHon	benchmark

38Copyright	©	2023,	Oracle	and/or	its	affiliates

XML Validation, lower is better

m
ill

is
ec

on
ds

 p
er

 o
p

100

225

350

475

600

seconds (samples)
0 5 10 15 20 25 30

baseline
CDS only (no archived code)
premain (with archived code)

one-second	samplesstartup	is	instant	
(within	first	second)

average	op	time,	sampled	at	1	second	intervals,	lower	is	better

• SomeHmes	startup	is	the	only	interesHng	win;	warmup	is	already	OK	for	smaller	apps.	

• In	this	case,	we	can	decisively	improve	startup,	compared	to	the	baseline	policy.	

• Benchmark	noise	can	make	it	hard	to	decide	where	is	the	peak	performance.	

• Over	Hme,	the	baseline	policy	sHll	seems	to	win	by	a	hair;	this	may	need	more	work.

Lessons	from	XML	validaHon	case	study

39Copyright	©	2023,	Oracle	and/or	its	affiliates

Case	study:		Spring	Boot	applicaHon	framework	startup

40

Spring v3.1.2 Hello World boot times
seconds, average of 3 runs, lower is better

0.400

0.800

1.200

1.600

wall clock from JVM boot Spring self-measurement

default (JDK 22)
AppCDS only (no premain)
premain (no indy or clinit)
premain (no clinit)
premain
SBaot + PM (no indy, clinit)
SBaot + PM (no clinit)
SBaot + premain

Spring	v3.1.2	Hello	
World	boot	times	
for	premain,	with	
and	without	various	
options.	

Time	in	seconds,	
average	of	3	runs,	
lower	is	better

wall	clock	from	JVM	boot Spring	self-measurement

• There	are	many	tacHcs	which	can	improve	startup.	

• We	win	big	because	the	tacHcs	all	work	in	synergy	(are	not	mutually	exclusive).	

• AppCDS	is	a	win,	back-shiMing	loading	and	resoluHon	through	premain.	
Code	archiving	is	further	win,	back-shiMing	JIT	work	through	premain.	

• Back-shiMing	indy	resoluHon	states	unlocks	further	opHmizaHons.	
The	clever	Tier	4	code	which	checks	for	<clinit>	wins,	but	only	a	liLle.	

• Low-level	JVM	metrics	give	a	liLle	more	data	than	Spring	self-reported	Hme.

Lessons	from	Spring	Boot	case	study

41Copyright	©	2023,	Oracle	and/or	its	affiliates

• For	now,	premain	acHviHes	are	derived	automaHcally	from	training	runs.	

• OpHmizable	states	generated	by	premain	are	dumped	into	the	CDS/JIT	archive.	
(Other	premain	states	are	dropped,	assumed	to	be	reconstructed	at	deployment.)	

• In	the	future,	user-defined	acHviHes	can	march	in	this	parade,	as	well.	
This	requires	work	on	characterizing	which	of	those	acHviHes	are	trusted	as	pure.	

• No	loss	of	Java’s	natural	dynamism,	no	new	constraints	on	the	programming	model.	

• Need	user-friendly	workflows	(not	flag	soup):	mulH-run	condensaHon,	“auto-train”.	
This	requires	more	work	on	moving	CDS/JIT	states	into	log	files	and	vice	versa.	

• Plenty	of	addiHonal	opportunity	for	performance	tuning,	policy	integraHon,	JIT	work.	
	
There	is	so	much	more	we	can	do.		Join	us!	 openjdk.org/projects/leyden

Current	status	of	premain	work:	Fresh	beginnings

42Copyright	©	2023,	Oracle	and/or	its	affiliates

https://openjdk.org/projects/leyden/

QuesHons?

43Copyright	©	2023,	Oracle	and/or	its	affiliates

openjdk.org/projects/leyden

https://openjdk.org/projects/leyden/

Project	Leyden

Mark	Reinhold	
Chief	Architect,	Java	Pla1orm	Group,	Oracle	

John	Rose	
JVM	Senior	Architect,	Java	Pla1orm	Group,	Oracle	

JVM	Language	Summit	
2023/8/8

Capturing	Lightning	in	a	Bo?le	

Copyright	©	2023,	Oracle	and/or	its	affiliates

