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The Modularity Landscape 

• Java Platform Module System 

– JSR 376, started February 2015 – targeted for Java SE 9 

• Java SE 9 Platform 

– JSR not started yet – will own the modularization of the Java SE API 

• Project Jigsaw 
– Reference Implementation of JSR 376 in OpenJDK (JEP 261) 

– Modularization of the JDK (JEP 200, JEP 201, JEP 260) 

– New run-time image format (JEP 220) 
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Project Jigsaw: Under The Hood 

Part I: Accessibility and Readability 

Part II: Different Kinds of Modules 

Part III: Loaders and Layers 
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Part I: Accessibility and Readability 
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Accessibility 1995-2015 

• public 

• protected 

• <package> 

• private 
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Accessibility 2015- 

• public to everyone 

• public but only to specific modules 

• public only within a module 

• protected 

• <package> 

• private 
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‘public’ no longer means “accessible”. 
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The result: 
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Accessibility and Module Declarations 
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// src/java.sql/module-info.java 

module java.sql { 

  exports java.sql; 

  exports javax.sql; 

  exports javax.transaction.xa; 

} 
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ClassLoader1 

class P.C class Q.D 
accesses 

Accessibility and Class Loaders 

delegates 
ClassLoader2 

class Q.D 

ClassLoader1 

class P.C class Q.D 
no access 

no delegation 
ClassLoader2 

class Q.D 
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ClassLoader1 

class P.C class Q.D 
accesses 

Accessibility and Class Loaders 

delegates 
ClassLoader2 

class Q.D 

ClassLoader1 

class P.C class Q.D 
no access 

no delegation 
ClassLoader2 

class Q.D 
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ClassLoader1 

Module X 

One Class Loader, Many Modules 
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Module Y 

class Q.D 
accesses? 

class P.C 
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The Role of Readability 

13 

ClassLoader1 

Module X Module Y 

class Q.D 
accesses 

class P.C 

reads 
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The Role of Readability 
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module X { 

  requires Y; 

} 

module Y { 

  exports Q; 

} 

Module X Module Y 

exports to 

reads 
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Readability in the Java SE module graph 

module java.sql { 

  requires java.logging; 

  exports java.sql; 

} 

module java.logging { 

  exports java.util.logging; 

} 

package java.util.logging; 

public class Logger { 

  ... 

} 

package java.sql; 

import java.util.logging.Logger; 

public class DriverManager { 

  new Logger() {..} 
} 
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Readability in the Java SE module graph 

module java.sql { 

  requires java.logging; 

  exports java.sql; 

} 

module java.logging { 

  exports java.util.logging; 

} 

package java.util.logging; 

public class Logger { 

  ... 

} 

package java.sql; 

import java.util.logging.Logger; 

public interface Driver { 

  Logger getParentLogger(); 
} 
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Readability in the Java SE module graph 

module java.sql { 

  requires java.logging; 

  exports java.sql; 

} 

module java.logging { 

  exports java.util.logging; 

} 

module myApp { 

  requires java.sql; 

  requires java.logging;  

} 
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Readability in the Java SE module graph 

module java.sql { 

  requires public java.logging; 

  exports java.sql; 

} 

module java.logging { 

  exports java.util.logging; 

} 

module myApp { 

  requires java.sql; 

  requires java.logging;  

} 
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Readability in the Java SE module graph 

module java.sql { 

  requires public java.logging; 

  requires public java.sql.time; 

} 

module java.logging { 

  exports java.util.logging; 

} 

module myApp { 

  requires java.sql; 

} 

module java.sql.time { 

  exports java.sql.time; 

} 
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Direct and implied readability 

• X reads Y if: 

– X requires Y 

 

or 

 

–  X reads Q, and Q requires public Y 

 

Module X 
 

requires Y 

Module Y 
reads 

Module X 
 

requires Q 

Module Q 
 

requires public Y 

reads 
Module Y 

reads 

reads 
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void doSomething(Class<?> c) { 

    Method[] ms = c.getDeclaredMethods(); 

    ms[0].invoke(…); 

} 

 

Core Reflection 
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Core Reflection 

setAccessible(true) 
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Summary of Part I: Accessibility and Readability 

• Accessibility used to be a simple check for ‘public’ or “same package”. 

• In Java SE 9, accessibility strongly encapsulates module internals. 

• Accessibility relies on readability, which can be direct or implied. 

• Accessibility is enforced by the compiler, VM, and Core Reflection. 
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Part II: Different Kinds of Modules 
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Named Modules 

25 

java.base java.sql 

jdk.compiler jdk.javadoc 

Named modules 

guava.jar junit.jar 

glassfish.jar hibernate.jar 

classpath 
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Unnamed module 

The Unnamed Module 
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java.base java.sql 

jdk.compiler jdk.javadoc 

Named modules 

guava.jar junit.jar 

glassfish.jar hibernate.jar 
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Unnamed module 

The Unnamed Module 
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java.base java.sql 

jdk.compiler jdk.javadoc 

Named modules 

guava.jar junit.jar 

glassfish.jar hibernate.jar 
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Automatic Modules 
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Unnamed module 

java.base java.sql 

jdk.compiler jdk.javadoc 

Named modules 

guava junit.jar 

glassfish.jar hibernate.jar 
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Automatic Modules 
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Unnamed module 

java.base java.sql 

jdk.compiler jdk.javadoc 

Named modules 

guava junit.jar 

glassfish.jar hibernate.jar 
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Automatic Modules 
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Unnamed module 

java.base java.sql 

jdk.compiler jdk.javadoc 

Named modules 

guava junit.jar 

glassfish.jar hibernate.jar 

javafx.core 
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Multiple Automatic Modules 
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Unnamed module 

java.base java.sql 

jdk.compiler jdk.javadoc 

Named modules 

guava junit.jar 

glassfish.jar 

hibernate 
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Multiple Automatic Modules 

Unnamed module 

java.base java.sql 

jdk.compiler jdk.javadoc 

Named modules 

guava junit.jar 

glassfish.jar 

hibernate 
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Summary of Part II: Different Kinds of Modules 

• Explicit named modules (java.sql) 

• Automatic named modules (guava) 

• Unnamed module (a.k.a. classpath) 

• Lots of readability “for free” to help with migration. 
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Part III: Loaders and Layers 
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Class loading doesn’t change. 
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Application loader Extension loader Bootstrap loader 

Class Loaders in the JDK 

Java Platform Module System 

java.base java.logging java.corba java.transaction jdk.compiler guava 

Java Virtual Machine 
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Boot layer 

Layers 
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Application loader Extension loader Bootstrap loader 

Java Platform Module System 

java.base java.logging java.corba java.transaction jdk.compiler guava 

Java Virtual Machine 
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Layer creation 

String moduleName -> { 

 switch (moduleName) { 

  case “java.base”: 

  case “java.logging”: 

   return BOOTSTRAP_LDR; 

  default: 

   return APP_LDR; 

 } 

} 

(1)          (2) 
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Boot layer 

Layers and the VM 
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Application loader Extension loader Bootstrap loader 

Java Platform Module System 

java.base java.logging java.corba java.transaction jdk.compiler guava 

Java Virtual Machine 

java.base java.logging java.corba java.transaction jdk.compiler guava 
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Well-formed graphs 
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Well-formed graphs 

 

“Excessive dependencies are bad. But, 

cyclic dependencies are especially bad.” 
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Well-formed graphs 

“Generally speaking, cycles are always bad! 

However, some cycles are worse than others. 

Cycles among classes are tolerable, assuming 

they don’t cause cycles among the packages or 

modules containing them. 

Cycles among packages may also be tolerable, 

assuming they don’t cause cycles among the 

modules containing them. 

Module relationships must never be cyclic.” 
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Well-formed graphs 

• A module may read at most one module that exports a package called P. 
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Module X 

requires Y 
requires Z 

Module Y 
 

exports P 

reads 

Module Z 
 

exports P 

reads 
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Well-formed maps 

 

 

 

 

 

 

• Different modules with the same package map to different loaders. 

• (Loader delegation respects module readability.) 
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String moduleName -> { 

 switch (moduleName) { 

  case “java.base”: 

  case “java.logging”: 

   return BOOTSTRAP_LDR; 

  default: 

   return APP_LDR; 

 } 

} 
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ClassLoader2 

Loaders and Readability 
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ClassLoader1 

Module X Module Y 

class Q.D 
accesses 

class P.C 

reads 

delegates 
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Example: DOM APIs 
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org.w3c.dom.css 

org.w3c.dom.stylesheets 

org.w3c.dom.html 

org.w3c.dom.xpath 
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Example: DOM APIs 
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Example: DOM APIs 

module jdk.xml.dom { 

  requires public java.xml; 

 

  exports org.w3c.dom.css; 

  exports org.w3c.dom.html; 

  exports org.w3c.dom.stylesheets; 

  exports org.w3c.dom.xpath; 

} 

delegates 

Bootstrap loader 

java.xml 

class javax.xml… 

Extension loader 

jdk.xml.dom 

interface 
org.w3c.dom.css.... 

reads 
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Example: DOM APIs 

delegates 

Bootstrap loader 

java.xml 

class javax.xml… 

Extension loader 

jdk.xml.dom 

interface 
org.w3c.dom.css.... 

reads 

jdk.plugin 

class com.sun… 

reads 

delegates? 
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Loader delegation respects module readability 
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ClassLoader2 ClassLoader1 

Module X 

requires Y 
requires Z 

Module Y 
 

exports P 

reads 

delegates 

ClassLoader3 

Module Z 
 

exports P 

reads 

delegates 
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Split packages (missing class) 
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module java.X { 

  exports javax.annotation; 

} 

javax/annotation/MyAnno1.class 

javax/annotation/MyAnno2.class 

Module java.X JAR file Y 
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Split packages (missing class) 
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Unnamed module 

java.base java.sql 

jdk.compiler java.annotations.common 

Named modules 

guava.jar 

jsr305.jar 
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Split packages (duplicate class) 
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Unnamed module 

java.base 

java.xml 

Named modules 

xerces.jar 
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Layers of layers 
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Boot layer 

Application loader Extension loader Bootstrap loader 

Java Platform Module System 

Java Virtual Machine 
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Layers and Versions 
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Boot layer 

Application loader Extension loader Bootstrap loader 

Java Platform Module System 

java.base java.logging java.corba java.transaction myapp mylib 

Java Virtual Machine 

Hadoop layer 

Loader 16 

guava@11 hadoop 

JavaScript layer 

Loader 23 

guava@18 
closure- 
compiler 

Loader 17 

jackson@1 

Loader 24 

jackson@2 
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Summary of Part III: Loaders and Layers 

• Modules do a better job of encapsulation than class loaders, but class 
loaders are still necessary. 

• Layers control the relationship between modules and class loaders. 

• Assuming class loaders respect the module graph, the system is safe by 
construction – no cycles or split packages. 
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Summary of Summaries 

• Strong encapsulation of modules by the compiler, VM, Core Reflection. 

• Unnamed and automatic modules help with migration. 

• The system is safe by construction – no cycles or split packages. 
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The module system: a seat belt, not a jetpack 
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Meta 
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Personal photo of speaker, France, 2001 
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What can you do to prepare for JDK 9? 

• Try JDK 9 with Jigsaw – jdk9.java.net/jigsaw 

• Run jdeps on your code and on your classpath. 

• Subscribe to jigsaw-dev @ OpenJDK to see common problems + solutions. 
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Safe Harbor Statement 

The preceding is intended to outline our general product direction. It is intended for 
information purposes only, and may not be incorporated into any contract. It is not a 
commitment to deliver any material, code, or functionality, and should not be relied upon 
in making purchasing decisions. The development, release, and timing of any features or 
functionality described for Oracle’s products remains at the sole discretion of Oracle. 
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