Modules and javac

a.k.a. Making javac module-aware
(Not making javac modular; that comes later)

Alex Buckley, Jonathan Gibbons
Sun Microsystems



Module usage at compile-time

Scenario
 Compile code that belongs to the HelloWorld module

 The HelloWorld module depends on the Quux module
module HelloWorld { requires Quux,; }

e javac can easily locate the Quux module and set an
Internal "magic ClassPath" containing Quux's classes

Problem

e Where does HelloWorld's module-info come from?



Compiling a single module

HelloWorld's module-info comes from root of ClassPath:

src/classes/com/foo/HelloWorld. java

/com/bar/Baz. java
/module-info. java

Familiar
Reuses existing structure of source trees

Easy to find complete module content

|

ClassPath value
shown in blue box

|




Compiling multiple modules together

 Difficult but necessary

- Module A requires module B which requires module A
- To start with, all we have is the source of modules A and B

e Given:

src/classes/com/foo/HelloWorld. java

/com/bar/Baz. java
/module-info. java

It's Impossible to put com/foo/HelloWorld. java
in a different module than com/bar/Baz.java

e What to do?



Compiling multiple modules together

If module name is in source, derive a "deep" location from it:

src/classes/com/foo/HelloWorld.java module
/module-info module

/com/bar/Baz. java module
/module-info module

com. foo.
com. foo.
com.bar.

com.bar.

Javac can find a module-info from a given module name

But hard to find complete module content

app;

app @ ..

app-

app @ ..

— Classes in a module could be anywhere under the ClassPath

Module names overload the package hierarchy

- No guarantee that module names will be similar to package
names; some directories may hold just a module-info

Makes the hard case (multiple modules) easy, and the easy

case (one module) hard, as membership is repeated everywhere



Compiling multiple modules together

* /f module name is in source, change path semantics to
pick the 'right' module-info on the ClassPath?

src/classesl/com/foo/HelloWorld module com. foo.app;
/module-info module com.foo.app @ ..

src/classes2/com/bar/Baz. java module com.bar.app;
/module-info module com.bar.app @ ..

 Can read source for multiple modules but cannot write
their classfiles, as -d sets one output directory

- Module name in source doesn't help



Overcoming the -d limitation

 Read module-info.java from multiple top-level locations:

src/classesl/com/foo/HelloWorld. java

/module-info. java

src/classes2/com/bar/Baz. java
/module-info. java

* Write module-info.class to "deep" locations under -d:

build/classes/com/foo/HelloWorld.class
/module-info.class -d value shown
/com/bar/Baz.class in green box

/module-info.class

* Destroys input.output isomorphism required by many tools



From ClassPath to ModulePath

 Instead of putting many locations on the ClassPath:

src/classesl/com/foo/HelloWorld. java
/module-info. java

src/classes2/com/bar/Baz. java 0
/module-info.java "I ModulePath value
shown in orange box.
Module names
written in orange.

« Simply put one location on the ModulePath:

N

-com .foo.app/com/foo/HelloWorld. java

/module-info. java

/com.bar.app/com/bar/Baz. java
/module-info. java

« When compiling com. foo.app/com/foo/XXX,
Javac gets module-info from com. foo.app/module-info



ModulePath is the answer

-com .foo.app/com/foo/HelloWorld. java

/module-info. java
/com.bar.app/com/bar/Baz. java
/module-info. java

Can compile one or multiple modules together
Can move classes between modules trivially
Easy to find complete module content
Multi-module packages "for free"

Structuring the source tree like this is good practice



Structuring the source tree

Can easily evolve from single-module structure of ClassPath:

src/classes

/com/foo/HelloWorld. java

/com/bar/Baz.java

/module-info. java

To multi-module structure of ModulePath:

_/com .foo.app/com/foo/HelloWorld. java

/module-info. java

/com.bar.app/com/bar/Baz. java

Each child of

/module-info. java

ModulePath is like a traditional ClassPath entry

Structure of output directory (-d) depends on:

- If ClassPath set: output to legacy single-module structure

- If ModulePath set: output to multi-module structure



Multiple locations on the ModulePath

. -com .foo.app/com/foo/HelloWorld. java

/module-info. java
/com.bar.app/com/bar/Baz. java
/module-info. java

_/com .foo.app/com/foo/parser/Parser. java

/com/foo/lexer/Lexer. java
/com.bar.app/...

_/org .w3c.xml/org/w3c/dom/Node.class

/org/w3c/sax/Parser.class
/module-info.class
/org.omg.corba/...



Multiple versions on the ModulePath

* ModulePath so far allows some version of a given module:

_/com .foo.app/com/foo/HelloWorld. java

/module-info. java
module com.foo.app @ 4.0 (..}

* ModulePath can also support multiple versions of a module:
_/com. foo.app-4.0/com/foo/HelloWorld. java

/module-info. java
module com.foo.app @ 4.0 {..}
/com.foo.app-5.0/com/foo/HelloWorld. java
/module-info. java

module com.foo.app @ 5.0 {..}



Javac and multiple versions

 When compiling a module M, javac must determine the
modules it requires and set an internal "magic ClassPath"
listing those modules

* M's required modules may come from ModulePath and/or
the library of the Jigsaw module system

- These locations may, in aggregate, have multiple versions of a
required module

- Javac delegates to the Jigsaw module system to select the "best"
available version of each and every module required by M

 The "magic ClassPath" for M lists the selected modules
(and their location either on the ModulePath or in a library)



Example of multiple versions

e Suppose module M being compiled requires com.foo.app @ 1.0+

* Multiple versions of com.foo.app are available:

src/modules/ /com/foo/HelloWorld. java
/module-info. java
/ /com/foo/HelloWorld. java

/module-info. java

Jigsaw com. foo.app@5.0 com/foo/HelloWorld.class
module-info.class

com.foo.app@6.0 com/foo/HelloWorld.class
module-info.class

* javac offers versions 4.0 and 5.0 from ModulePath to the module
system, which also considers its own 5.0 and 6.0 versions

 The module system selects 6.0; javac adds it to M's "magic ClassPath"



Module membership in source

 ModulePath is agnostic about 'module' declarations in
source determining module membership

Does module membership in source:

* Specify something an IDE couldn't infer? No.

— Trivial to infer from filesystem structure

* Provide essential safety at compile-time? No.

— Just prevents accidental movement between directories

* Provide essential safety at runtime? No.

- Module system can always override

* Help when compiling multiple modules? No.

— The problem is finding a module-info, not the module-info



|Issues with membership in source

» Should module declarations be in every normal source file
(repetitive) or in package-info (mostly unknown) or both?

» Two meanings for 'module' keyword (membership+accessibility)

* Host system conventions like ModulePath still matter

* Makes easy case hard + hard case easy

No module membership in source means:

* Only one module declaration (in module-info) per module
* Obvious filesystem structure drives membership

* Makes easy case easy + hard case possible

Conclusion: no module declarations in source files or Module
attributes in classfiles (except for module-info.java/class)



Summary of javac flags

-modulepath
— The module-aware replacement for -classpath

- Used for compiled classes of modules
— Checked for source files unless -modulesourcepath is also given

-modulesourcepath
— The module-aware replacement for -sourcepath

— Always best to put all necessary files on command line
-classpath and -sourcepath still supported
-d

— Output directory for classfiles

— Output directory structure follows input directory structure (output is as
JDKG6 unless -modulepath is specified)

-S
— Output directory for source files generated by annotation processors
— Will probably adopt -d convention: output structure follows input structure



