
  

Modules and javac

a.k.a. Making javac module-aware
(Not making javac modular; that comes later)

Alex Buckley, Jonathan Gibbons
Sun Microsystems



  

Module usage at compile-time
Scenario
● Compile code that belongs to the HelloWorld module
● The HelloWorld module depends on the Quux module

module HelloWorld { requires Quux; }
● javac can easily locate the Quux module and set an 

internal "magic ClassPath" containing Quux's classes

Problem
● Where does HelloWorld's module-info come from?



  

Compiling a single module
● HelloWorld's module-info comes from root of ClassPath:

src/classes/com/foo/HelloWorld.java
/com/bar/Baz.java
/module-info.java

● Familiar
● Reuses existing structure of source trees
● Easy to find complete module content

ClassPath value
shown in blue box



  

Compiling multiple modules together
● Difficult but necessary

– Module A requires module B which requires module A
– To start with, all we have is the source of modules A and B

● Given:
src/classes/com/foo/HelloWorld.java

   /com/bar/Baz.java
   /module-info.java

it's impossible to put com/foo/HelloWorld.java
in a different module than com/bar/Baz.java

● What to do?



  

Compiling multiple modules together
● If module name is in source, derive a "deep" location from it:

src/classes/com/foo/HelloWorld.java module com.foo.app;
  /module-info module com.foo.app @ ..

   /com/bar/Baz.java module com.bar.app;
  /module-info module com.bar.app @ ..

● javac can find a module-info from a given module name
● But hard to find complete module content

– Classes in a module could be anywhere under the ClassPath
● Module names overload the package hierarchy

– No guarantee that module names will be similar to package 
names; some directories may hold just a module-info

● Makes the hard case (multiple modules) easy, and the easy 
case (one module) hard, as membership is repeated everywhere



  

Compiling multiple modules together
● If module name is in source, change path semantics to 

pick the 'right' module-info on the ClassPath?

src/classes1/com/foo/HelloWorld module com.foo.app;

   /module-info module com.foo.app @ ..
src/classes2/com/bar/Baz.java module com.bar.app;

   /module-info module com.bar.app @ ..

● Can read source for multiple modules but cannot write 
their classfiles, as -d sets one output directory
– Module name in source doesn't help



  

Overcoming the -d limitation
● Read module-info.java from multiple top-level locations:

src/classes1/com/foo/HelloWorld.java
   /module-info.java

src/classes2/com/bar/Baz.java
   /module-info.java

● Write module-info.class to "deep" locations under -d:

build/classes/com/foo/HelloWorld.class
   /module-info.class

    /com/bar/Baz.class
   /module-info.class

● Destroys input:output isomorphism required by many tools

-d value shown
in green box



  

From ClassPath to ModulePath
● Instead of putting many locations on the ClassPath:

src/classes1/com/foo/HelloWorld.java
   /module-info.java

src/classes2/com/bar/Baz.java
   /module-info.java

● Simply put one location on the ModulePath:

src/modules/com.foo.app/com/foo/HelloWorld.java
  /module-info.java

  /com.bar.app/com/bar/Baz.java
  /module-info.java

● When compiling com.foo.app/com/foo/XXX,
javac gets module-info from com.foo.app/module-info

ModulePath value
shown in orange box.

Module names
written in orange.



  

ModulePath is the answer
● src/modules/com.foo.app/com/foo/HelloWorld.java

  /module-info.java
  /com.bar.app/com/bar/Baz.java

  /module-info.java
● Can compile one or multiple modules together
● Can move classes between modules trivially
● Easy to find complete module content
● Multi-module packages "for free"
● Structuring the source tree like this is good practice



  

Structuring the source tree
● Can easily evolve from single-module structure of ClassPath:

src/classes/com/foo/HelloWorld.java
/com/bar/Baz.java
/module-info.java

● To multi-module structure of ModulePath:
src/modules/com.foo.app/com/foo/HelloWorld.java

/module-info.java
/com.bar.app/com/bar/Baz.java

/module-info.java
● Each child of ModulePath is like a traditional ClassPath entry
● Structure of output directory (-d) depends on:

– If ClassPath set: output to legacy single-module structure
– If ModulePath set: output to multi-module structure



  

Multiple locations on the ModulePath
● src/modules/com.foo.app/com/foo/HelloWorld.java

  /module-info.java
  /com.bar.app/com/bar/Baz.java

  /module-info.java
:
build/gensrc/com.foo.app/com/foo/parser/Parser.java

/com/foo/lexer/Lexer.java
/com.bar.app/...

:
lib/thirdparty/org.w3c.xml/org/w3c/dom/Node.class

  /org/w3c/sax/Parser.class
  /module-info.class

  /org.omg.corba/...



  

Multiple versions on the ModulePath
● ModulePath so far allows some version of a given module:

src/modules/com.foo.app/com/foo/HelloWorld.java
/module-info.java

module com.foo.app @ 4.0 {..}

● ModulePath can also support multiple versions of a module:
src/modules/com.foo.app-4.0/com/foo/HelloWorld.java

    /module-info.java
module com.foo.app @ 4.0 {..}

/com.foo.app-5.0/com/foo/HelloWorld.java
    /module-info.java

module com.foo.app @ 5.0 {..}



  

javac and multiple versions
● When compiling a module M, javac must determine the 

modules it requires and set an internal "magic ClassPath" 
listing those modules

● M's required modules may come from ModulePath and/or 
the library of the Jigsaw module system
– These locations may, in aggregate, have multiple versions of a 

required module
– javac delegates to the Jigsaw module system to select the "best" 

available version of each and every module required by M

● The "magic ClassPath" for M lists the selected modules 
(and their location either on the ModulePath or in a library)



  

● Suppose module M being compiled requires com.foo.app @ 1.0+
● Multiple versions of com.foo.app are available:

src/modules/com.foo.app-4.0/com/foo/HelloWorld.java
/module-info.java

  /com.foo.app-5.0/com/foo/HelloWorld.java
/module-info.java

Jigsaw com.foo.app@5.0 com/foo/HelloWorld.class
module-info.class

com.foo.app@6.0 com/foo/HelloWorld.class
module-info.class

● javac offers versions 4.0 and 5.0 from ModulePath to the module 
system, which also considers its own 5.0 and 6.0 versions

● The module system selects 6.0; javac adds it to M's "magic ClassPath"

Example of multiple versions



  

Module membership in source
● ModulePath is agnostic about 'module' declarations in 

source determining module membership

Does module membership in source:
● Specify something an IDE couldn't infer? No.

– Trivial to infer from filesystem structure

● Provide essential safety at compile-time? No.
– Just prevents accidental movement between directories

● Provide essential safety at runtime? No.
– Module system can always override

● Help when compiling multiple modules? No.
– The problem is finding a module-info, not the module-info



  

Issues with membership in source
● Should module declarations be in every normal source file 

(repetitive) or in package-info (mostly unknown) or both?
● Two meanings for 'module' keyword (membership+accessibility)
● Host system conventions like ModulePath still matter
● Makes easy case hard + hard case easy

No module membership in source means:
● Only one module declaration (in module-info) per module
● Obvious filesystem structure drives membership
● Makes easy case easy + hard case possible

Conclusion: no module declarations in source files or Module 
attributes in classfiles (except for module-info.java/class)



  

Summary of javac flags
● -modulepath

– The module-aware replacement for -classpath
– Used for compiled classes of modules
– Checked for source files unless -modulesourcepath is also given

● -modulesourcepath
– The module-aware replacement for -sourcepath
– Always best to put all necessary files on command line

● -classpath and -sourcepath still supported
● -d

– Output directory for classfiles
– Output directory structure follows input directory structure (output is as 

JDK6 unless -modulepath is specified)
● -s

– Output directory for source files generated by annotation processors
– Will probably adopt -d convention: output structure follows input structure


